| evel Ancestor

Philip Bille/Inge Li Gortz

L evel Ancestor

+ Level ancestor problem. Preprocess rooted tree T with n nodes to support
+ LA(v,K): return the kth ancestor of node v.

L evel Ancestor

+ Applications.
- Basic primitive for navigating trees (any hierarchical data).
- lllustration of wealth of techniques for trees.
- Path decompositions.
-+ Tree decomposition.
- Tree encoding and tabulation.

L evel Ancestor

- @Goal. Linear space and constant time.

+ Solution in 7 steps (!).
- No data structure. Very slow, litte space
+ Direct shortcuts. Very fast, lot of space.

+ Ladder decomposition + jump pointers + top-bottom decomposition. Very fast, little space.

Solution 1: No Data Structure

+ Data structure. Store tree T (using pointers).
- LA(v,k): Walk up.

+ Time. O(n)

-+ Space. O(n)

Solution 2: Direct Shortcuts

O O

. . .
. . . . A
. . . s .
. . . A/ .
. °, . . .
.
.
. ®, . ®, .
. °, . . .
.
) *) * .
))
. . .
. \ . . .
. °, . °, .
. .
. . \d
))
. . \J
. °, . °, .
. .
. . \d
. .
. . \d
. °, . °, .
. g . g .

° C[IIITITTT]

Data structure. Store each root-to-leaf in array.
LA(v,K): Jump up.

-+ Time. O(1)

- Space. O(n?)

Solution 2: Direct Shortcuts

O O

. . .
’, . ’, . .
. .
.
.
. . .
. .
. * . . .
A) A) .
. . .
. .
. °, . \J .
.
)) .
))
)) .
. .
. \ . \ .
. . .
. .
. * . * .
) *) * .
. . .
°, . °, .
.
))
. ° . ° .
. °, . °, .
.

s EEEEEEE

Data structure. Store each root-to-leaf in array.

LA(v,K): Jump up.
-+ Time. O(1)
- Space. O(n?)

LA(v,4)

Solution 2: Direct Shortcuts

O

. .
. .
. . “ .
. . \J
. . A/ .
. . “ .
. . . .
. . \J
. . \J .
.
. . . .
. . \d
. . . .
.
. . . .
. . \d
. . * .
. .
. . .
. . \J
\J .
. .
)) % .
. . \d
. . °, .
. . g .

° [TTITT]

- Data structure. Store each root-to-leaf in array.
+ LA(v,K): Jump up.

-+ Time. O(1)

- Space. O(n?)

Solution 2: Direct Shortcuts

O

. .
. .
. . “ .
. . \J
. . A/ .
. . “ .
. . . .
. . \J
. . \J .
.
. . . .
. . \d
. . . .
.
. . . .
. . \d
. . * .
. .
. . .
. . \J
\J .
. .
)) % .
. . \d
. . °, .
. . g .

° [TTITT]

- Data structure. Store each root-to-leaf in array.
+ LA(v,K): Jump up.

-+ Time. O(1)

- Space. O(n?)

Solution 3: Jump Pointers

° ° 111

-+ Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
- LA(v,k): Jump to most distant ancestor no further away than k. Repeat.

-+ Time. O(log n)

+ Space. O(n log n)

Solution 3: Jump Pointers

2 3 4 2 6 / 3 9 10
1 2 3 1 2 6 / 3 9
1 1 2 6 /

Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
LA(v,K): Jump to most distant ancestor no further away than k. Repeat.

Time. O(log n)

Space. O(n log n)

Solution 3: Jump Pointers

2 3 4 2 6 / 3 9 10
1 2 3 1 2 6 / 3 9
1 1 2 6 /

LA(11,6) = LA(7,2) = 2

Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
LA(v,K): Jump to most distant ancestor no further away than k. Repeat.

-+ Time. O(log n)

+ Space. O(n log n)

Solution 4: Long Path Decomposition

A 0

+ Long path decomposition.
- Find root-to-leaf path p of maximum length.
- Recursively apply to subtrees hanging of p.
- Lemma. Any root-to-leaf path passes through at most O(n'/2) long paths.
- Longest paths partition T = total length (number of nodes) of all longest paths is = n

Solution 4: Long Path Decomposition

T

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

Solution 4: Long Path Decomposition

5 3 1 13
4 2 14
6 3
/ 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

===

Solution 4: Long Path Decomposition

LA(S,4) 5 3 1 13
4 2 14
6 3
/ 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

===

Solution 4: Long Path Decomposition

LA(S,4) 5 3 1 13
4 2 14
6 3
/ 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

===

Solution 4: Long Path Decomposition

13

14

LA(5,4) = LA(4,3) 5 3 1
4 2
6 3
7 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.

- Time. O(n1/2)
+ Space. O(n)

===

Solution 4: Long Path Decomposition

LA(5,4) = LA(4,3) = LA(3,2) 5 3 1 13
4 2 14
6 3
/ 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

===

Solution 4: Long Path Decomposition

LA(5,4) = LA4,3) = LA(3,2) = LA(2,1) 5 3 1 13
4 2 14
6 3
/ 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

===

Solution 4: Long Path Decomposition

LA(G,4) = LA(4,4) = LA(3,3) = LA2,1) =1 5 3 1 13
4 2 14
6 3
/ 9

10

11

12

- Data structure. Store each long path in array.

- LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n1/2)

- Space. O(n)

===

Solution 5: Ladder Decomposition

-+ Ladder decomposition.
- Compute long path decomposition.
-+ Double each long path.
- Lemma. Any root-to-leaf path passes through at most O(log n) ladders.
- Total length of ladders is < 2n.

Solution 5: Ladder Decomposition

- Data structure.
+ Store each ladder in array.
+ Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

Solution 5: Ladder Decomposition

N |]Oo | bR
((O TN B o o I I \ O I I

10
11
12

- Data structure.
+ Store each ladder in array.

+ Each node points to ladder corresponding to its longest path.

- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

13

14

Solution 5: Ladder Decomposition

N | O | B~ IDN| =
O© |0 | DN | =

10
11
12

- Data structure.
+ Store each ladder in array.
+ Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

Solution 5: Ladder Decomposition

LA(5,4)

- Data structure.
+ Store each ladder in array.
+ Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

Solution 5: Ladder Decomposition

LA(5,4) = LA4,3)

- Data structure.
+ Store each ladder in array.
+ Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

Solution 5: Ladder Decomposition

LA(5,4) = LA4,3)

- Data structure.
+ Store each ladder in array.
+ Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

Solution 5: Ladder Decomposition

LA(5,4) = LA(4,3) = 1 2

W
—
—
w

(@)
O© | 0| N

10
11
12

- Data structure.
+ Store each ladder in array.
+ Each node points to ladder corresponding to its longest path.
- LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
+ Time. O(log n)
-+ Space. O(n)

Solution 6: Ladder Decomposition + Jump Pointers

» Data structure. Ladder decomposition + Jump pointers.

 LA(V,K):
» Jump to most distant ancestor not further away than k using jump pointer.
» Jump to kth ancestor using ladder.

* Time. O(1)

» Space. O(n) + O(n log n) = O(n log n)

Solution 6: Ladder Decomposition + Jump Pointers

» Correctness.
* A node at height x is on a ladder of height at least 2x.
- After jJump we are at a node of height at least k/2.
- => after jump we are at a ladder that contains our goal.

Solution 7: Top-Bottom Decomposition

A4 A £AD £

- Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with = 1/4 log n descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with = 1/4 log n descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

q © © .
\ © R
Ced @ S

@' 000‘1"0
g o S © @b

- Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
-+ Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

- Size of each bottom tree < 1/4 log n.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with = 1/4 log n descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

- Size of each bottom tree < 1/4 log n.
- Number of jump nodes is at most O(n/log n).

Solution 7: Top-Bottom Decomposition

- Data structure for top.
- Ladder decomposition + Jump pointers for jump nodes.
* For each internal node pointer to some jump node below.
+ LA(v,K) in top:
* Follow pointer to jump node below v.
-+ Jump pointer + ladder solution.
- Time. O(1)
- Space. O(n) + (n/log n - log n) = O(n)

Solution 7: Top-Bottom Decomposition

- Tree encoding. Encode each bottom tree B using balanced parentheses representation.
- <2-1/4logn=1/2 log n bits.

Solution 7: Top-Bottom Decomposition

O

O

oV v has preorder number 5 = 0101;

(0) () (00)
Code(B,v,Z2) = 0011000111001011 01010010

- Tree encoding. Encode each bottom tree B using balanced parentheses representation.
- <2-1/41logn=1/2 log n bits.

- Integer encoding. Encode inputs v and k to LA
- <2 -log(1/4log n) < 2 loglog n bits.

- LA encoding. Concatenate into code(B, v, k)
- = |code(B, v, k)| < 1/2 log n + 2 log log n bits.

Solution 7: Top-Bottom Decomposition

q ©) © .
' @c"o
0’@‘0

Clks 39 (D) (QAET
J o S © @b

+ Data structure for bottom.
- Build table A s.t. Alcode(B, v, k)] = LA(v, k) in bottom tree B.
+ LA(v,K) in bottom: Lookup in A.
- Time. O(1)
- Space. D|code| « 21/2logn +2loglogn = n1/2 log2 n = o(n).
- Combine bottom and top data structures = O(n) space and O(1) query time.

Solution 7: Top-Bottom Decomposition

- Theorem. We can solve the level ancestor problem in linear space and constant query time.

