
Level Ancestor
Philip Bille/Inge Li Gørtz

Level Ancestor
• Level ancestor problem. Preprocess rooted tree T with n nodes to support

• LA(v,k): return the kth ancestor of node v.

LA(v,5) = u

v

u

Level Ancestor
• Applications.

• Basic primitive for navigating trees (any hierarchical data).

• Illustration of wealth of techniques for trees.

• Path decompositions.

• Tree decomposition.

• Tree encoding and tabulation.

Level Ancestor
• Goal. Linear space and constant time.

• Solution in 7 steps (!).

• No data structure. Very slow, litte space

• Direct shortcuts. Very fast, lot of space.

• ….

• Ladder decomposition + jump pointers + top-bottom decomposition. Very fast, little space.

Solution 1: No Data Structure

• Data structure. Store tree T (using pointers).

• LA(v,k): Walk up.

• Time. O(n)

• Space. O(n)

Solution 2: Direct Shortcuts

• Data structure. Store each root-to-leaf in array.

• LA(v,k): Jump up.

• Time. O(1)

• Space. O(n2)

Solution 2: Direct Shortcuts

• Data structure. Store each root-to-leaf in array.

• LA(v,k): Jump up.

• Time. O(1)

• Space. O(n2)

LA(v,4) v

Solution 2: Direct Shortcuts

• Data structure. Store each root-to-leaf in array.

• LA(v,k): Jump up.

• Time. O(1)

• Space. O(n2)

v LA(v,4)

Solution 2: Direct Shortcuts

• Data structure. Store each root-to-leaf in array.

• LA(v,k): Jump up.

• Time. O(1)

• Space. O(n2)

v LA(v,4)

Solution 3: Jump Pointers

• Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..

• LA(v,k): Jump to most distant ancestor no further away than k. Repeat.

• Time. O(log n)

• Space. O(n log n)

Solution 3: Jump Pointers

• Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..

• LA(v,k): Jump to most distant ancestor no further away than k. Repeat.

• Time. O(log n)

• Space. O(n log n)

1

2

6

7

8

9

10

3

4

5

11

3 4 5 6 7 8 9 10 11

2 3 4 2 6 7 8 9 10

1 2 3 1 2 6 7 8 9

1 1 2 6 7

3 4 5 6 7 8 9 10 11

2 3 4 2 6 7 8 9 10

1 2 3 1 2 6 7 8 9

1 1 2 6 7

Solution 3: Jump Pointers

• Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..

• LA(v,k): Jump to most distant ancestor no further away than k. Repeat.

• Time. O(log n)

• Space. O(n log n)

1

2

6

7

8

9

10

3

4

5

11

LA(11,6) = LA(7,2) = 2

Solution 4: Long Path Decomposition

• Long path decomposition.

• Find root-to-leaf path p of maximum length.

• Recursively apply to subtrees hanging of p.

• Lemma. Any root-to-leaf path passes through at most O(n1/2) long paths.

• Longest paths partition T ⟹ total length (number of nodes) of all longest paths is = n

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

LA(5,4) 5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

LA(5,4) 5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

LA(5,4) = LA(4,3) 5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

LA(5,4) = LA(4,3) = LA(3,2) 5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

LA(5,4) = LA(4,3) = LA(3,2) = LA(2,1) 5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)

1

2

8

9

10

11

12

3

4

6

7

13

145

LA(5,4) = LA(4,4) = LA(3,3) = LA(2,1) = 1 5 3 1 13

4 2 14

6 8

7 9

10

11

12

Solution 5: Ladder Decomposition

• Ladder decomposition.

• Compute long path decomposition.

• Double each long path.

• Lemma. Any root-to-leaf path passes through at most O(log n) ladders.

• Total length of ladders is ≤ 2n.

Solution 5: Ladder Decomposition

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

5 3 1 13

4 2 14

6 8

7 9

10

11

12

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

LA(5,4)

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

LA(5,4) = LA(4,3)

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

LA(5,4) = LA(4,3)

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

LA(5,4) = LA(4,3) = 1

• Data structure.

• Store each ladder in array.

• Each node points to ladder corresponding to its longest path.

• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n)

Solution 6: Ladder Decomposition + Jump Pointers

•Data structure. Ladder decomposition + Jump pointers.

• LA(v,k):

• Jump to most distant ancestor not further away than k using jump pointer.

• Jump to kth ancestor using ladder.

• Time. O(1)

•Space. O(n) + O(n log n) = O(n log n)

?

Solution 6: Ladder Decomposition + Jump Pointers

•Correctness.

•A node at height x is on a ladder of height at least 2x.

•After jump we are at a node of height at least k/2.

•=> after jump we are at a ladder that contains our goal.

?

Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants.

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants.

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants.

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants.

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree.

• Size of each bottom tree < 1/4 log n.

Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants.

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree.

• Size of each bottom tree < 1/4 log n.

• Number of jump nodes is at most O(n/log n).

Solution 7: Top-Bottom Decomposition

• Data structure for top.

• Ladder decomposition + Jump pointers for jump nodes.

• For each internal node pointer to some jump node below.

• LA(v,k) in top:

• Follow pointer to jump node below v.

• Jump pointer + ladder solution.

• Time. O(1)

• Space. O(n) + (n/log n · log n) = O(n)

Solution 7: Top-Bottom Decomposition

• Tree encoding. Encode each bottom tree B using balanced parentheses representation.

• < 2 · 1/4 log n = 1/2 log n bits.

(()) ((())) (()())

Solution 7: Top-Bottom Decomposition

• Tree encoding. Encode each bottom tree B using balanced parentheses representation.

• < 2 · 1/4 log n = 1/2 log n bits.

• Integer encoding. Encode inputs v and k to LA

• < 2 · log(1/4log n) < 2 loglog n bits.

• LA encoding. Concatenate into code(B, v, k)

• ⟹ |code(B, v, k)| < 1/2 log n + 2 log log n bits.

(()) ((())) (()())

0011000111001011 0101Code(B,v,2) = 0010

v v has preorder number 5 = 01012

Solution 7: Top-Bottom Decomposition

• Data structure for bottom.

• Build table A s.t. A[code(B, v, k)] = LA(v, k) in bottom tree B.

• LA(v,k) in bottom: Lookup in A.

• Time. O(1)

• Space. 2|code| < 21/2 log n + 2 log log n = n1/2 log2 n = o(n).

• Combine bottom and top data structures ⟹ O(n) space and O(1) query time.

Solution 7: Top-Bottom Decomposition
• Theorem. We can solve the level ancestor problem in linear space and constant query time.

