Level Ancestor

Level Ancestor

Philip Bille/Inge Li Gortz

Level Ancestor

+ Applications.

- Basic primitive for navigating trees (any hierarchical data).

- lllustration of wealth of techniques for trees.
+ Path decompositions.
+ Tree decomposition.
-+ Tree encoding and tabulation.

-+ Level ancestor problem. Preprocess rooted tree T with n nodes to support

-+ LA(v,Kk): return the kth ancestor of node v.

LA(v,5) =u

Level Ancestor

+ Goal. Linear space and constant time.
+ Solution in 7 steps (!).

- No data structure. Very slow, litte space
- Direct shortcuts. Very fast, lot of space.

- Ladder decomposition + jump pointers + top-bottom decomposition. Very fast, little space.

Solution 1: No Data Structure Solution 2: Direct Shortcuts

+ Data structure. Store tree T (using pointers). - Data structure. Store each root-to-leaf in array.

+ LA(v,k): Walk up. + LA(v,k): Jump up.
+ Time. O(n) + Time. O(1)
+ Space. O(n) + Space. O(n?)

Solution 2: Direct Shortcuts Solution 2: Direct Shortcuts

LA(v,4) LA(v,4)

- Data structure. Store each root-to-leaf in array.
+ LA(v,k): Jump up.

- Data structure. Store each root-to-leaf in array.
+ LA(v,k): Jump up.

+ Time. O(1) + Time. O(1)

+ Space. O(n?) + Space. O(n?)

Solution 2: Direct Shortcuts Solution 3: Jump Pointers

LA(v,4)
1T
- Data structure. Store each root-to-leaf in array. + Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
+ LA(v,k): Jump up. + LA(v,k): Jump to most distant ancestor no further away than k. Repeat.
+ Time. O(1) -+ Time. O(log n)
+ Space. O(n?) + Space. O(n log n)
Solution 3: Jump Pointers Solution 3: Jump Pointers

3 4 6 7
2] [e]
1] B

LA(11,6) = LA(7,2) = 2

3 4 6 7
2] [e]

-+ Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
+ LA(v,k): Jump to most distant ancestor no further away than k. Repeat.

+ Time. O(log n)

- Space. O(n log n)

-+ Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..
+ LA(v,k): Jump to most distant ancestor no further away than k. Repeat.

+ Time. O(log n)

- Space. O(n log n)

Solution 4: Long Path Decomposition Solution 4: Long Path Decomposition

X
&

O
O

oo e S—
O
7
fo e
fo e

oo e S—
O
7
fo e
fo e
o

O O s O
O O s O

- Long path decomposition. - Data structure. Store each long path in array.
- Find root-to-leaf path p of maximum length. + LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Recursively apply to subtrees hanging of p. + Time. O(n'72)

+ Lemma. Any root-to-leaf path passes through at most O(n'/2) long paths. + Space. O(n)

- Longest paths partition T = total length (humber of nodes) of all longest paths is = n

Solution 4: Long Path Decomposition Solution 4: Long Path Decomposition

>_
/
>_
/

o

LA(5,4)

‘4
BHE

4 2 4 4 2

S

‘4
BHE

©
O2020,0,

© [10]
]]
12 ® 12
- Data structure. Store each long path in array. - Data structure. Store each long path in array.
+ LA(v,k): Jump to kth ancestor or root of long path. Repeat. + LA(v,k): Jump to kth ancestor or root of long path. Repeat.
- Time. O(n2) - Time. O(n2)

+ Space. O(n) + Space. O(n)

O2020,0,

©2020)
®

Solution 4: Long Path Decomposition

Solution 4: Long Path Decomposition

LA(5,4)

4 2 4

‘4
BHE

- Data structure. Store each long path in array.

+ LA(v,k): Jump to kth ancestor or root of long path. Repeat.
+ Time. O(n'72)

+ Space. O(n)

Solution 4: Long Path Decomposition

o

©

O2020,0,
OO0
S

LA(5,4) = LA(4,3) = LA@B,2)

4 2 4

‘4
BHE

- Data structure. Store each long path in array.

+ LA(v,k): Jump to kth ancestor or root of long path. Repeat.
+ Time. O(n'2)

+ Space. O(n)

©2020)
©

LA®B.4) = LA49) ; O
| | Q)
2] :
8 ©) @
B oBNOIING
ol ® % ©
m O,
12 O,
- Data structure. Store each long path in array.
+ LA(v,k): Jump to kth ancestor or root of long path. Repeat.
+ Time. O(n2)
- Space. O(n)
Solution 4: Long Path Decomposition
LA(5,4) = LA(4,3) = LAB,2) = LA@2,1) [] O,
||)
o 2] :
8 © O,
] ?
[10] © %

- Data structure. Store each long path in array.

+ LA(v,k): Jump to kth ancestor or root of long path. Repeat.
+ Time. O(n'72)

+ Space. O(n)

©2020)
®

Solution 4: Long Path Decomposition Solution 5: Ladder Decomposition

LA(5,4) = LA(4,4) = LA@G,3) = LA@2,1) = 1 5 13 ©
B ; |
. |
© © |
() (]i) © [
o]
® % © !
] © !
- © i
+ Ladder decomposition.
- Data structure. Store each long path in array. - Compute long path decomposition.
+ LA(v,k): Jump to kth ancestor or root of long path. Repeat. - Double each long path.
- Time. O(n'2) + Lemma. Any root-to-leaf path passes through at most O(log n) ladders.
+ Space. O(n) - Total length of ladders is < 2n.
Solution 5: Ladder Decomposition Solution 5: Ladder Decomposition
— i
|
] Kl
! | B
] B
| |
l 10
1
2]
+ Data structure. + Data structure.
- Store each ladder in array. - Store each ladder in array.
- Each node points to ladder corresponding to its longest path. - Each node points to ladder corresponding to its longest path.
+ LA(v,k): Jump to kth ancestor or root of ladder. Repeat. + LA(v,k): Jump to kth ancestor or root of ladder. Repeat.
-+ Time. O(log n) -+ Time. O(log n)

+ Space. O(n) + Space. O(n)

Solution 5: Ladder Decomposition

Solution 5: Ladder Decomposition

=
~]-]
[=[=]

+ Data structure.
- Store each ladder in array.

1
B
6| [&]
9
ol

13

0
11

12

Q\

OzO0n0-0)

- Each node points to ladder corresponding to its longest path.
+ LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

+ Time. O(log n)
+ Space. O(n)

Solution 5: Ladder Decomposition

o

O-O-O=0-O=D>-0

LA(5,4) = LA(4,3)

8
L]

+ Data structure.
- Store each ladder in array.

g
21 - |8
3| 1] [18
<] 2]
o] [e]
Kb}

0

11

1

- Each node points to ladder corresponding to its longest path.
+ LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

-+ Time. O(log n)
+ Space. O(n)

LA(5,4)

=

+ Data structure.
- Store each ladder in array.

=
.w]

SE
714
o] [e]
7] e
10
ER

12

2\

OzO0n0-0)

- Each node points to ladder corresponding to its longest path.
+ LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

+ Time. O(log n)
+ Space. O(n)

Solution 5: Ladder Decomposition

o

O-O-O-D-O=D-0

LA(5,4) = LA(4,3)

8
L]

+ Data structure.
- Store each ladder in array.

1B

3| |1
7 [z
oRo
A [

10
m

1

- Each node points to ladder corresponding to its longest path.
+ LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

-+ Time. O(log n)
+ Space. O(n)

Solution 5: Ladder Decomposition Solution 6: Ladder Decomposition + Jump Pointers

LA(5,4) = LA(4,3) = 1 ‘I’ ©
4 2 8
K EE 5 — ? T
2
o] |e] 5 (%) \QP
° | © ® !
110 © i
1
& ¢ |
- Data structure. « Data structure. Ladder decomposition + Jump pointers.
- Store each ladder in array. « LA(v,k):
- Each node points to ladder corresponding to its longest path. « Jump to most distant ancestor not further away than k using jump pointer.
+ LA(v,k): Jump to kth ancestor or root of ladder. Repeat. « Jump to kth ancestor using ladder.
+ Time. O(log n) * Time. O(1)
+ Space. O(n) +Space. O(n) + O(n log n) = O(n log n)
Solution 6: Ladder Decomposition + Jump Pointers Solution 7: Top-Bottom Decomposition
?
‘L + Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
+ Correctness. -+ Top tree. Jump nodes + ancestors.
* A node at height x is on a ladder of height at least 2x. - Bottom trees. Below top tree.

« After jump we are at a node of height at least k/2.
+=> after jump we are at a ladder that contains our goal.

Solution 7: Top-Bottom Decomposition

-+ Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
-+ Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

Solution 7: Top-Bottom Decomposition

+ Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
- Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

- Size of each bottom tree < 1/4 log n.

- Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
+ Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

Solution 7: Top-Bottom Decomposition

- Jump nodes. Maximal deep nodes with > 1/4 log n descendants.
+ Top tree. Jump nodes + ancestors.
- Bottom trees. Below top tree.

- Size of each bottom tree < 1/4 log n.
- Number of jump nodes is at most O(n/log n).

Solution 7: Top-Bottom Decomposition Solution 7: Top-Bottom Decomposition

(O (O ©0)

- Data structure for top.
- Ladder decomposition + Jump pointers for jump nodes. - Tree encoding. Encode each bottom tree B using balanced parentheses representation.
+ For each internal node pointer to some jump node below. - <2-1/41og n = 1/2 log n bits.
+ LA(v,K) in top:
+ Follow pointer to jump node below v.
+ Jump pointer + ladder solution.
+ Time. O(1)
- Space. O(n) + (n/log n - log n) = O(n)

Solution 7: Top-Bottom Decomposition Solution 7: Top-Bottom Decomposition

v v has preorder number 5 = 0101

(0) (0N (00)
Code(B,v,2) = 0011000111001011 01010010

- Tree encoding. Encode each bottom tree B using balanced parentheses representation. - Data structure for bottom.

+ <2-1/41og n=1/2 log n bits. - Build table A s.t. A[code(B, v, k)] = LA(v, k) in bottom tree B.
- Integer encoding. Encode inputs v and k to LA + LA(v,k) in bottom: Lookup in A.

+ <2 -log(1/4log n) < 2 loglog n bits. + Time. O(1)
- LA encoding. Concatenate into code(B, v, k) - Space. 2lcode] < 21/2logn +2loglogn = n1/2 og2 n = o(n).

- = |code(B, v, k)| < 1/2 log n + 2 log log n bits. - Combine bottom and top data structures = O(n) space and O(1) query time.

Solution 7: Top-Bottom Decomposition

- Theorem. We can solve the level ancestor problem in linear space and constant query time.

