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Level Ancestor
• Level ancestor problem. Preprocess rooted tree T with n nodes to support


• LA(v,k): return the kth ancestor of node v.

LA(v,5) = u

v

u

Level Ancestor
• Applications.


• Basic primitive for navigating trees (any hierarchical data).

• Illustration of wealth of techniques for trees.


• Path decompositions.

• Tree decomposition.

• Tree encoding and tabulation.

Level Ancestor
• Goal. Linear space and constant time.

• Solution in 7 steps (!).


• No data structure. Very slow, litte space

• Direct shortcuts. Very fast, lot of space. 

• ….

• Ladder decomposition + jump pointers + top-bottom decomposition. Very fast, little space. 



Solution 1: No Data Structure 

• Data structure. Store tree T (using pointers). 

• LA(v,k): Walk up.

• Time. O(n)

• Space. O(n)

Solution 2: Direct Shortcuts

• Data structure. Store each root-to-leaf in array.

• LA(v,k): Jump up.

• Time. O(1)

• Space. O(n2)
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Solution 2: Direct Shortcuts

• Data structure. Store each root-to-leaf in array.

• LA(v,k): Jump up.
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Solution 3: Jump Pointers

• Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..

• LA(v,k): Jump to most distant ancestor no further away than k. Repeat. 

• Time. O(log n)

• Space. O(n log n)
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Solution 3: Jump Pointers

• Data structure. For each node v, store pointers to ancestors at distance 1,2,4, ..

• LA(v,k): Jump to most distant ancestor no further away than k. Repeat. 

• Time. O(log n)

• Space. O(n log n)
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Solution 4: Long Path Decomposition

• Long path decomposition. 

• Find root-to-leaf path p of maximum length. 

• Recursively apply to subtrees hanging of p.


• Lemma. Any root-to-leaf path passes through at most O(n1/2) long paths. 

• Longest paths partition T ⟹ total length (number of nodes) of all longest paths is = n

Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)
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Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.
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Solution 4: Long Path Decomposition

• Data structure. Store each long path in array.

• LA(v,k): Jump to kth ancestor or root of long path. Repeat.

• Time. O(n1/2)

• Space. O(n)
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Solution 5: Ladder Decomposition

• Ladder decomposition. 

• Compute long path decomposition.

• Double each long path.


• Lemma. Any root-to-leaf path passes through at most O(log n) ladders. 

• Total length of ladders is ≤ 2n.

Solution 5: Ladder Decomposition

• Data structure. 

• Store each ladder in array. 

• Each node points to ladder corresponding to its longest path.


• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n) 
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• Data structure. 

• Store each ladder in array. 

• Each node points to ladder corresponding to its longest path.


• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n) 
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• Data structure. 

• Store each ladder in array. 

• Each node points to ladder corresponding to its longest path.


• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n) 
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• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n) 

Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

LA(5,4) = LA(4,3)

• Data structure. 

• Store each ladder in array. 

• Each node points to ladder corresponding to its longest path.


• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n) 



Solution 5: Ladder Decomposition

1

2

8

9

10

11

12

3

4

6

7

13

145

1 2

4 2 - 8

5 3 1 13

4 2 14

6 8

7 9

10

11

12

LA(5,4) = LA(4,3) = 1

• Data structure. 

• Store each ladder in array. 

• Each node points to ladder corresponding to its longest path.


• LA(v,k): Jump to kth ancestor or root of ladder. Repeat.

• Time. O(log n)

• Space. O(n) 

Solution 6: Ladder Decomposition + Jump Pointers

•Data structure. Ladder decomposition + Jump pointers.

• LA(v,k): 

• Jump to most distant ancestor not further away than k using jump pointer.

• Jump to kth ancestor using ladder.


• Time. O(1)

•Space. O(n) + O(n log n) = O(n log n)

?

Solution 6: Ladder Decomposition + Jump Pointers

•Correctness. 

•A node at height x is on a ladder of height at least 2x.

•After jump we are at a node of height at least k/2. 

•=> after jump we are at a ladder that contains our goal. 

?

Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants. 

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree. 
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Solution 7: Top-Bottom Decomposition

• Jump nodes. Maximal deep nodes with ≥ 1/4 log n descendants. 

• Top tree. Jump nodes + ancestors.

• Bottom trees. Below top tree. 


• Size of each bottom tree < 1/4 log n.

• Number of jump nodes is at most O(n/log n).



Solution 7: Top-Bottom Decomposition

• Data structure for top. 

• Ladder decomposition + Jump pointers for jump nodes.

• For each internal node pointer to some jump node below.


• LA(v,k) in top: 

• Follow pointer to jump node below v.

• Jump pointer + ladder solution. 


• Time. O(1)

• Space.  O(n) + (n/log n · log n)  = O(n) 

Solution 7: Top-Bottom Decomposition

• Tree encoding. Encode each bottom tree B using balanced parentheses representation. 

• < 2 · 1/4 log n = 1/2 log n bits.

(()) ((())) (()())

Solution 7: Top-Bottom Decomposition

• Tree encoding. Encode each bottom tree B using balanced parentheses representation. 

• < 2 · 1/4 log n = 1/2 log n bits.


• Integer encoding. Encode inputs v and k to LA 

• < 2 · log(1/4log n) < 2 loglog n bits.


• LA encoding. Concatenate into code(B, v, k) 

• ⟹ |code(B, v, k)| < 1/2 log n + 2 log log n bits.

(()) ((())) (()())

0011000111001011 0101Code(B,v,2) = 0010

v v has preorder number 5 = 01012

Solution 7: Top-Bottom Decomposition

• Data structure for bottom.

• Build table A s.t. A[code(B, v, k)] = LA(v, k) in bottom tree B.  


• LA(v,k) in bottom: Lookup in A.

• Time. O(1)

• Space. 2|code| < 21/2 log n + 2 log log n = n1/2 log2 n = o(n).

• Combine bottom and top data structures ⟹ O(n) space and O(1) query time. 



Solution 7: Top-Bottom Decomposition
• Theorem. We can solve the level ancestor problem in linear space and constant query time. 


