
Philip Bille

Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

Range Reporting Problem
• 2D range reporting problem. Preprocess at set of points P ⊆ ℜ2 to support

• report(x1, y1, x2, y2): Return the set of points in R ∩ P, where R is rectangle given by (x1, y1)
and (x2, y2).

(x1, y1)

(x2, y2)

Applications
• Relational databases. SELECT all employees between 60 and 70 years old with a montly salary

between 60000 and 80000 DKr

Salary

age

80000

60000

60 70

Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

1D Range Reporting
• 1D range reporting. Preprocess a set of n points P ⊆ ℜ to support:

• report(x1, x2): Return the set of points in interval [x1, x2]

• Output sensitivity. Time should depend on the size of the output.

• Simplifying assumption. Only comparison-based techniques (e.g. no hashing or bittricks).

• Solutions?

1D Range Reporting

• Sorted array. Store P in sorted order.

• Report(x1, x2): Binary search for predecessor of x1. Traverse array until > x2.

• Time. O(log n + occ)

• Space. O(n)

• Preprocessing. O(n log n)

1 3 8 15 17 23 25 26 27 30 46 51 52 65 66 70

1D Range Reporting
• Theorem. We can solve the 1D range reporting problem in

• O(n) space.

• O(log n + occ) time for queries.

• O(n log n) preprocessing time.

• Optimal in comparison-based model.

Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

2D Range reporting
• Goal. 2D range reporting with

• O(n log n) space and O(log n + occ) query time or

• O(n) space and query time.

• Solution in 4 steps.

• Generalized 1D range reporting.

• 2D range trees.

• 2D range trees with bridges.

• kD trees.

𝖮(𝗇 + occ)

Generalized 1D Range Reporting
• Data structure.

• Sorted array over x-coordinate

• Sorted array over y-coordinate

• Report(x1, y1, x2, y2):

• Compute all points Rx in x-range.

• Compute all points Ry in y-range.

• Return Rx ∩ Ry

• Time?

2D Range Trees
• Data structure.

• Perfectly balanced binary tree over x-coordinate.

• Each node v stores array of points below v sorted by y coordinate.

• Space?

• O(n log n).

• Preprocessing time. O(n log n)

2D Range Trees
• Report(x1, y1, x2, y2): Find paths to predecessor of x1 and successor of x2.

• At each off-path node do 1D query on y-range.

• Return union of results.

• Time?

• Predecessor + successor: O(log n)

• < 2log n 1D queries: O(log n + occ in subrange) time per query.

• ⟹ total O(log2 n + occ) time.

2D Range Reporting
• Theorem. We can solve the 2D range reporting problem in

• O(n log n) space.

• O(log2 n + occ) time for queries.

• O(n log n) preprocessing time.

• Challenge. Do we really need the log2 n term for queries? Can we get (optimal) O(log n + occ)
instead?

Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

• Predecessor problem in nested sets. Let S = {S1, S2, …, Sk} be a family of sets from universe U
such that U ⊇ S1 ⊇ S2 ⊇ ∙∙∙ ⊇ Sk.

• predecessor(x): return the predecessor of x in each of S1, S2, …, Sk.

Predecessor in Nested Sets

x u-10

S1

S2

S3

Sk-1

Sk

|Si| = ni and n1 + n2 + ∙∙∙ + nk = n

Predecessor in Nested Sets
• Goal. Predecessor in nested sets with O(n) space and O(log n + k) query time.

• Solution in 3 steps.

• Sorted arrays. Slow and linear space.

• Tabulation. Fast but too much space.

• Sorted arrays with bridges. Fast and little space.

Solution 1: Sorted Arrays
• Data structure. Sorted arrays for each set.

• Predecessor(x): Binary search in each array.

• Time. O(log n1 + log n2 + ∙∙∙ + log nk) = O(k log n)

• Space. O(n)

x u-10

S1

S2

S3

Sk-1

Sk

|Si| = ni and n1 + n2 + ∙∙∙ + nk = n

Solution 2: Tabulation
• Data structure. Sorted array on S1 + each entry stores k-1 predecessors in S2, …,Sk.

• Predecessor(x): Binary search in S1 array + report predecessors.

• Time. O(log n1 + k) = O(log n + k)

• Space. O(nk)

• Challenge. Can we get the best of both worlds?

x u-10

S1

S2

S3

Sk-1

Sk

|Si| = ni and n1 + n2 + ∙∙∙ + nk = n

Solution 3: Sorted Arrays with Bridges
• Data structure. Sorted arrays for each set + bridges.

• Predecessor(x): Binary search in S1 array + traverse bridges and report elements.

• Time. O(log n1 + k) = O(log n + k)

• Space. O(n)

x u-10

S1

S2

S3

Sk-1

Sk

|Si| = ni and n1 + n2 + ∙∙∙ + nk = n

Predecessor in Nested Sets
• Theorem. We can solve the predecessor in nested sets problem in

• O(n) space.

• O(log n + k) query time.

• O(n log n) preprocessing time.

• Extensions.

• Predecessor ⟹ 1D range reporting.

• More tricks ⟹ works for non-nested sets. Called fractional cascading.

• Challenge. How can we use predecessor in nested sets for 2D range reporting?

• Goal. 2D range reporting in O(n log n) space and O(log n) time

• Idea. Consider node v with children vl and vr.

• Arrays at vl and vr are subsets of array at v.

• All searches in arrays during a query are on the same y-range.

2D Range Reporting

• Data structure. 2D range tree with bridges.

• Each point in array at v stores bridges to arrays in vl and vr.

• Report(x1, y1, x2, y2): As 2D range tree query

• Binary search in root array + traverse bridges for remaining 1D queries.

• Time. O(log n + occ)

• Space. O(nlog n)

• Preprocessing. O(nlog n)

2D Range Reporting 2D Range Reporting
• Theorem. We can solve the 2D range reporting problem in

• O(n log n) space

• O(log n + occ) time for queries.

• O(n log n) preprocessing time.

• What can we do with only linear space?

Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

kD Trees
• The 2D tree (k = 2).

• A balanced binary tree over point set P.

• Recursively partition P into rectangular regions containing (roughly) same number of points.

Partition by alternating horizontal and vertical lines.

• Each node in tree stores region and line.

• Space. O(n)

• Preprocessing. O(n log n)

a

b

d

c

f

e

g

h

i

j

k

l

m

n

l1

l2

l3

l6l4

l8

l10

l5 l7

l12

l13

l9 l2 l3

l4 l5 l6 l7

l8 l9 l10 l11 l13

g j

a b c d e f k l m nh i

l12

l1

l11

kD Trees
• Report(x1, y1, x2, y2): Traverse 2D tree starting at the root. At node v:

• Case 1. v is a leaf: report the unique point in region(v) if contained in range.

• Case 2. region(v) is disjoint from range: stop.

• Case 3. region(v) is contained in range: report all points in region(v).

• Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.

• Time. 𝖮(𝗇)

l2 l3

l4 l5 l6 l7

l8 l9 l10 l11 l13

g j

a b c d e f k l m nh i

l12

l1

a

b

d

c

f

e

g

h

i

j

k

l

m

n

l1

l2

l3

l6l4

l8

l10

l5 l7

l12

l13

l9 l11
l2 l3

l4 l5 l6 l7

l8 l9 l10 l11 l13

g j

a b c d e f k l m nh i

l1

1 1

1

1 1 1 1

2

2

2

4

4

4

4

4

4

4 44

kD trees
• Theorem. We can solve the 2D range reporting problem in

• O(n) space

• time

• O(n log n) preprocessing

𝖮(𝗇 + occ)

2D Range Reporting
• Theorem. We can solve 2D range reporting in either

• O(n log n) space and O(log n + occ) query time

• O(n) space and query time.

• Extensions.

• More dimensions.

• Inserting and deleting points.

• Using word RAM techniques.

• Other shapes (circles, triangles, etc.)

𝖮(𝗇 + occ) Range Reporting
• Range reporting problem

• 1D range reporting

• 2D range reporting

• Range trees

• Predecessor in nested sets

• kD trees

