Hashing

- Hashing Recap
- Dictionaries

- Perfect Hashing
- String Hashing

Philip Bille

Hashing

- Hashing Recap

Hashing Recap

- Hash function idea.

- Want a random, crazy, chaotic function that maps a large universe to a small range. The
function should distribute the items “evenly.”

- Hash function.
- Let H be a family of functions mapping a universe U to {0, ..., m-1}.
- A hash function h is a function chosen randomly from H.
- Typically m « |U|.

- Goals.
- Low collision probability: for any xzy, we want Pr(h(x) = h(y)) to be small.
- Fast evaluation.
- Small space.

Hashing Recap

- Universal hashing.
- Let H be a family of functions mapping a universe U to {0, ..., m-1}.
- His universal if for any x # y in U and h chosen uniformly at random from H

1
Pr(h(x) = h(y)) < —.
m

- Examples.
- Multiply-mod-prime.
- h,p(x) =ax+b mod pwithH={h,,|a€{1,....p—1},b€{0,...,p—1}}.
- Multiply-shift.
. h,(x) = (ax mod 2¥) > (k — I) with H = {h, | ais an odd integer in {1, ...,2%—1}}

Hashing

- Dictionaries

Dictionaries

- Dictionary problem. Maintain a dynamic set of integers S € U subject to following operations
- LOOKUP(Xx): return true if x € S and false otherwise.
- INSERT(X): set S =S u {x}
- DELETE(x): set S = S\ {x}

- Satellite information. Information associated with each integer.

- Applications. Lots of practical applications and key component in other algorithms and data
structures.

- Challenge. Can we get a compact data structure with fast operations.

Chained Hashing

- Chained hashing.
- Choose universal hash function h from U to {0, ..,m-1}, where m = O(n).
- Initialize an array A[Q, ..., m-1].
- AJi] stores a linked list containing the keys in S whose hash value is i.

41— 1

© 00 N O OO~ WO N =2+ O

- Space. O(m + n) = O(n)

Chained Hashing

» QOperations.
« LOOKUP(x): Compute h(x). Scan A[h(x)]. Return true if x is in list and false otherwise.
* INSERT(x): Compute h(x). Scan A[h(x)]. Add x to the front of list if it is not there already.
« DELETE(X): Compute h(x). Scan A[h(x)]. Remove x from list if it is there.

41— 1

© 00 N O OO~ WO N =2+ O

. Time. O(1 + |A[hX)]|)

Chained Hashing

- What is the expected length of A[h(x)]?

(1 ifh(y) = h(x)
| Le”Y‘{o h(y) # h(x)

|
CE(IAhI) =E[Y1, =ZE<Iy)=1+ZPr(h(x)=h(y))S1+(n—1)-;=0(1)

yeS yeS yeS\{x}

- Theorem. We can solve the dictionary problem in O(n) space and constant expected time per
operation.

Hashing

- Perfect Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given aset S ¢ U = {0,..,u-1} of size n for preprocessing support the
following operation

- LOOKUP(X): return true if x € S and false otherwise.

-+ Challenge. Can we do better than (dynamic) dictionary solution?

- Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

- Perfect hash function in O(n) space and O(1) evaluation time = solution with O(n) space and
O(1) worst-case lookup time.

- Do perfect hash functions with O(n) space and O(1) evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing

- Goal. Perfect hashing in linear space and constant worst-case time.
- Solution in 3 steps.

- Solution 1. Collision-free but with too much space.

- Solution 2. Many collisions but linear space.

- Solution 3: FKS scheme [Fredman, Komlos, Szemerédi 1984]. Two-level solution. Combines
solution 1 and 2.

Solution 1: Collision-Free, Quadratic Space

13

41

o ~h W N =2 O

98| 66
99

- Data structure.
- Array A of size n2.

- Universal hash function mapping U to {0, ..., n2-1}. Choose randomly during preprocessing
until collision-free on S. Store each x € S at position A[h(x)].

- Space. O(n?).

Solution 1: Collision-Free, Quadratic Space

13

41

o ~h W N =2 O

98| 66
99

» Queries.

- LOOKUP(X): Check A[h(x)].
- Time. O(1).
 Preprocessing time?

Solution 1: Collision-Free, Quadratic Space

- Analysis.
B I ifh(y) =h(x)
- tethy = {0 i h(y) # h(x)

- Let C = total number of collisions on S.

CEO=E| Y Ly[= D E(L,) = X Pr(heo =hy) < <;> % <1E

X,YES xF#y X,YES XF#y X,YES XF#y

- = With probability 1/2 we get perfect hashing function. If not perfect try again.
- = Expected number of trials before we get a perfect hash function is O(1).
- Theorem. We can solve the static dictionary problem in

- O(n?) space and O(n2) expected time preprocessing time.

- O(1) worst-case query time.

Solution 2: Many Collisions, Linear Space.

- As solution 1 but with an array of length n. What is the expected number of collisions?

O =E| T 1, |- 2E(n,) = Xer (o =h) < (5) 1 <5

X,YES xF#y X,YES XF#y X,YES XF#y

Solution 3: FKS-Scheme.

41 1

| 54

16 96 66

© 00 N O OO A WO N =2 O

Data structure. Two-level solution.
- At level 1 use solution with many collisions and linear space.
Resolve each collisions at level 1 with collision-free solution at level 2.
- Space?

Solution 3: FKS-Scheme.

41 1

| 54

16 96 66

© 00 N O OO A WO N =2 O

* Queries.
- LOOKUP(X): Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Time. O(1).

Solution 3: FKS-Scheme.

- Space analysis. What is the the total size of level 1 and level 2 hash tables?
- LetSi={xeS|h(x)=i}
- Let C = total number of collisions on level 1.

S.
_C= Z < | 2" > by construction.

o 41 1

| 54

16 96 66

- C =0(n) by solution 2.

a’=a+2 <a>
- Space. 2

o) ()

© 00 N O O~ WO N =+ O

o<n+2|si|+22<|i‘|>>=O(n+n+2n)=0(n)

Static Dictionaries and Perfect Hashing

- FKS scheme.
- O(n) space and O(n) expected preprocessing time.
- Lookups with two evaluations of a universal hash function.

- Theorem. We can solve the static dictionary problem for a set S of size n in
- O(n) space and O(n) expected preprocessing time.
- O(1) worst-case time per lookup.

- Multilevel data structures.

- FKS is example of multilevel data structure technique. Combine different solutions for same
problem to get an improved solution.

Hashing

- String Hashing

String Hashing

- Define hash function on strings.
- Goals.

- Low collision probability.

- Fast evaluation.

- Small space.

- Fast string manipulation.

String Hashing

- Karp-Rabin Fingerprint.
- Let S be a string of length n. We view characters as digits and S as an integer.
- Let p is a prime number. Pick uniformly at random integer z €{0, ..., p-1}.

- The Karp-Rabin fingerprint of S is

$o(S) = S[1]z2"" +S[2]z"* + -+ + S[n — 1]z' + S[n] mod p

= Z S[il-z""] mod p
=1

- The fingerprint of S is the polynomial over the field Z, evaluated at the random integer z.

String Hashing

- Theorem. (Collision probability) Let S and T be distinct strings of length s, and let p be a prime.
For arandom z €{0, ..., p-1}:

Pr(¢h, ,(S) = b, ,(T)) < %

- Proof.

Pr (¢o(S) = () = Pr (Y slil- 27 = Y T[] - 7 mod p)
=1 i=1

= Pr < Z (S[i]=T[iD-z"'=0 mod p)
i=1

Z (S[i] = T[i]) - z*~" is a non-zero polynomial over Z, of degree s-1.
i=1

- = It has at most s-1 roots = The probability that our random z is one of those is at most
(s-1)/p < s/p.

String Hashing

- Consider substrings of S of length s.

S[i, i +s - 1]

Sli+1,i+ 9]

. Fingerprint computation. We can compute qﬁp’Z(S[i, | +s — 1]) in O(s) time.
- Proof. See exercises.

- Rolling property. ¢, ,(S[i + 1,1+ s]) = (¢, ,(Sli, i1 +s—1]) — S[i]lz2~ Nz + S[i +s] mod p
- Proof. See exercises.

. = We can compute (ﬁp,Z(S[i + 1,1+ s]) from qbp,Z(S[i, | + s — 1]) in constant time.

String Hashing

- String matching. Given strings S and P, determine if P is a substring in S.

S = yabbadabbado
P = abba

- What solutions do we know? |P| = m, |S| = n.
- Brute force comparison: O(hm) time
- Knuth-Morris-Pratt algorithm [KMP1977]: O(n + m) time.

String Hashing

S = yabbadabbado
P = abba

- Karp-Rabin Algorithm.
- Pick p = m2.
- Compute ¢(P).
- Compute and compare ¢(S[i, i + m — 1]) with ¢(P) for all i.
- If fingerprints match, verify using brute-force comparison. Return “yes!” if we match.
- Time.
- Let F be the number of collisions, i.e., S[i,i+m-1]=P but ¢(S[i,i+m—1]) = p(P).
- =0 +m+Fm).

String Hashing

S = yabbadabbado
P = abba

- Expected number of collisions.
- The probability of collision at a single substring is m/p < 1/m.
- = Expected number of collision on all n-m+1 substrings < (n-m+1)/m < n/m.

- = Expected time is O(n + m + mn/m) = O(n + m).

String Hashing

- Theorem. We can solve the string matching problem in O(n + m) time expected time.

- String matching with Karp-Rabin fingerprints.
- Simple, practical, fast.
- More techniques = Fast reporting, small space, real-time, streaming, etc.

Hashing

- Hashing

- Dictionaries

- Perfect Hashing
- String Hashing

