

Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

Philip Bille

Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

Hashing Recap

- **Hash function idea.**
 - Want a random, crazy, chaotic function that maps a large universe to a small range. The function should distribute the items “evenly.”
- **Hash function.**
 - Let H be a family of functions mapping a universe U to $\{0, \dots, m-1\}$.
 - A **hash function** h is a function chosen randomly from H .
 - Typically $m \ll |U|$.
- **Goals.**
 - Low **collision probability**: for any $x \neq y$, we want $\Pr(h(x) = h(y))$ to be small.
 - Fast evaluation.
 - Small space.

Hashing Recap

- **Universal hashing.**
 - Let H be a family of functions mapping a universe U to $\{0, \dots, m-1\}$.
 - H is **universal** if for any $x \neq y$ in U and h chosen uniformly at random from H

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}.$$

- **Examples.**
 - Multiply-mod-prime.
 - $h_{a,b}(x) = ax + b \pmod{p}$ with $H = \{h_{a,b} \mid a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\}\}$.
 - Multiply-shift.
 - $h_a(x) = (ax \bmod 2^k) \gg (k - l)$ with $H = \{h_a \mid a \text{ is an odd integer in } \{1, \dots, 2^k - 1\}\}$

Hashing

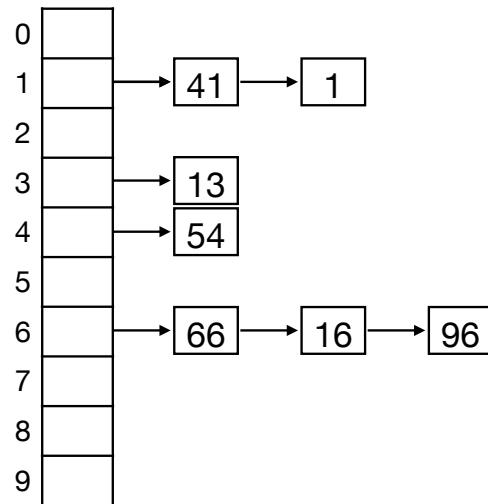
- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

Dictionaries

- **Dictionary problem.** Maintain a dynamic set of integers $S \subseteq U$ subject to following operations
 - $\text{LOOKUP}(x)$: return true if $x \in S$ and false otherwise.
 - $\text{INSERT}(x)$: set $S = S \cup \{x\}$
 - $\text{DELETE}(x)$: set $S = S \setminus \{x\}$
- **Satellite information.** Information associated with each integer.
- **Applications.** Lots of practical applications and key component in other algorithms and data structures.
- **Challenge.** Can we get a compact data structure with fast operations.

Chained Hashing

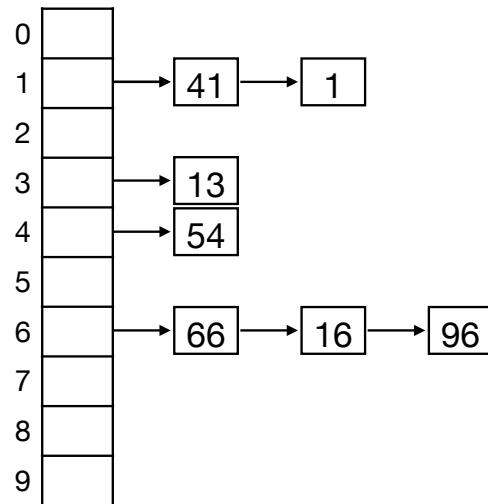
- **Chained hashing.**
 - Choose universal hash function h from U to $\{0, \dots, m-1\}$, where $m = \Theta(n)$.
 - Initialize an array $A[0, \dots, m-1]$.
 - $A[i]$ stores a linked list containing the keys in S whose hash value is i .



- **Space.** $O(m + n) = O(n)$

Chained Hashing

- **Operations.**
 - $\text{LOOKUP}(x)$: Compute $h(x)$. Scan $A[h(x)]$. Return true if x is in list and false otherwise.
 - $\text{INSERT}(x)$: Compute $h(x)$. Scan $A[h(x)]$. Add x to the front of list if it is not there already.
 - $\text{DELETE}(x)$: Compute $h(x)$. Scan $A[h(x)]$. Remove x from list if it is there.



- **Time.** $O(1 + |A[h(x)]|)$

Chained Hashing

- What is the expected length of $A[h(x)]$?
- Let $I_y = \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases}$
- $E(|A[h(x)]|) = E\left(\sum_{y \in S} I_y\right) = \sum_{y \in S} E(I_y) = 1 + \sum_{y \in S \setminus \{x\}} \Pr(h(x) = h(y)) \leq 1 + (n - 1) \cdot \frac{1}{m} = O(1)$
- **Theorem.** We can solve the dictionary problem in $O(n)$ space and constant expected time per operation.

Hashing

- Hashing
- Dictionaries
- **Perfect Hashing**
- String Hashing

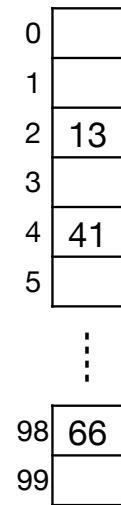
Static Dictionaries and Perfect Hashing

- **Static dictionary problem.** Given a set $S \subseteq U = \{0, \dots, u-1\}$ of size n for preprocessing support the following operation
 - $\text{LOOKUP}(x)$: return true if $x \in S$ and false otherwise.
- **Challenge.** Can we do better than (dynamic) dictionary solution?
- **Perfect Hashing.** A **perfect hash function** for S is a **collision-free** hash function on S .
 - Perfect hash function in $O(n)$ space and $O(1)$ evaluation time \Rightarrow solution with $O(n)$ space and $O(1)$ **worst-case lookup time**.
 - Do perfect hash functions with $O(n)$ space and $O(1)$ evaluation time exist for any set S ?

Static Dictionaries and Perfect Hashing

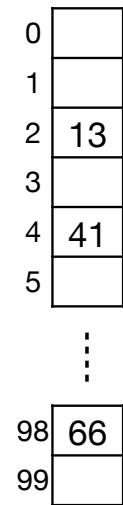
- **Goal.** Perfect hashing in linear space and constant worst-case time.
- **Solution in 3 steps.**
 - **Solution 1.** Collision-free but with too much space.
 - **Solution 2.** Many collisions but linear space.
 - **Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984].** Two-level solution. Combines solution 1 and 2.

Solution 1: Collision-Free, Quadratic Space



- **Data structure.**
 - Array A of size n^2 .
 - Universal hash function mapping U to $\{0, \dots, n^2-1\}$. Choose randomly during preprocessing until collision-free on S. Store each $x \in S$ at position $A[h(x)]$.
- **Space.** $O(n^2)$.

Solution 1: Collision-Free, Quadratic Space



- **Queries.**
 - $\text{LOOKUP}(x)$: Check $A[h(x)]$.
- **Time.** $O(1)$.
- **Preprocessing time?**

Solution 1: Collision-Free, Quadratic Space

- **Analysis.**

- Let $I_{x,y} = \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{if } h(y) \neq h(x) \end{cases}$

- Let C = total number of collisions on S .

- $E(C) = E\left(\sum_{x,y \in S, x \neq y} I_{x,y}\right) = \sum_{x,y \in S, x \neq y} E(I_{x,y}) = \sum_{x,y \in S, x \neq y} \Pr(h(x) = h(y)) \leq \binom{n}{2} \frac{1}{n^2} < \frac{1}{2}$

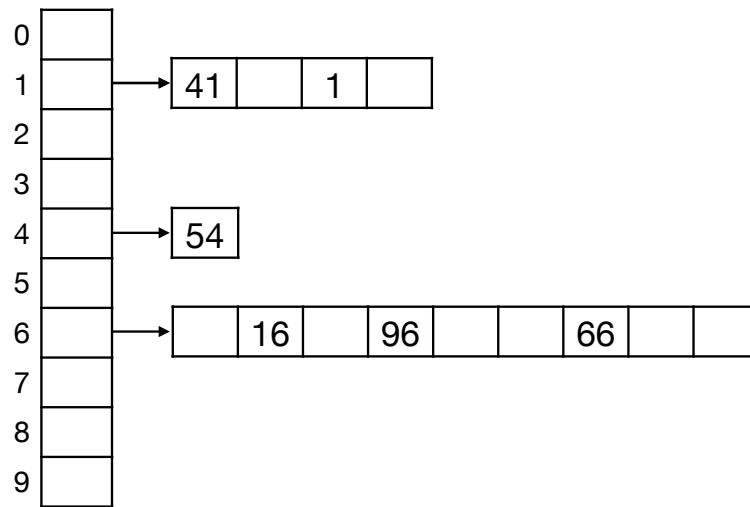
- \Rightarrow With probability 1/2 we get perfect hashing function. If not perfect try again.
- \Rightarrow Expected number of trials before we get a perfect hash function is $O(1)$.
- **Theorem.** We can solve the static dictionary problem in
 - $O(n^2)$ space and $O(n^2)$ expected time preprocessing time.
 - $O(1)$ worst-case query time.

Solution 2: Many Collisions, Linear Space.

- As solution 1 but with an array of length n . What is the expected number of collisions?

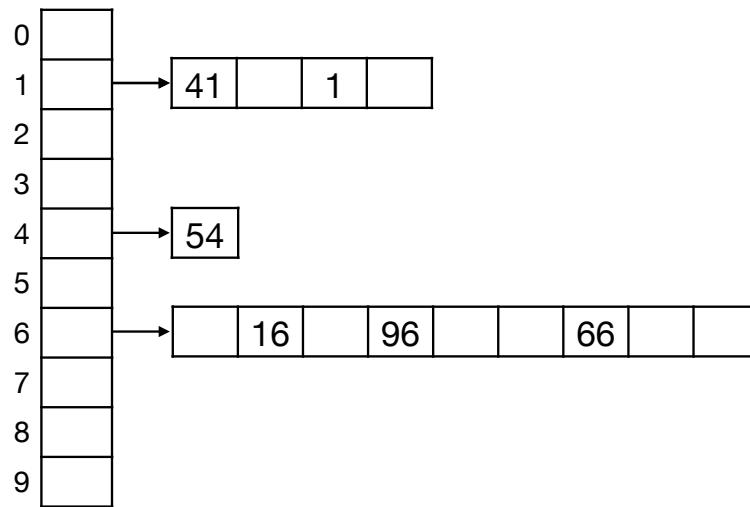
$$\cdot E(C) = E\left(\sum_{x,y \in S, x \neq y} I_{x,y}\right) = \sum_{x,y \in S, x \neq y} E(I_{x,y}) = \sum_{x,y \in S, x \neq y} \Pr(h(x) = h(y)) \leq \binom{n}{2} \frac{1}{n} < \frac{n}{2}$$

Solution 3: FKS-Scheme.



- **Data structure.** Two-level solution.
 - At level 1 use solution with many collisions and linear space.
 - Resolve each collisions at level 1 with collision-free solution at level 2.
- **Space?**

Solution 3: FKS-Scheme.



- **Queries.**
 - $\text{LOOKUP}(x)$: Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- **Time.** $O(1)$.

Solution 3: FKS-Scheme.

- **Space analysis.** What is the total size of level 1 and level 2 hash tables?

- Let $S_i = \{x \in S \mid h(x) = i\}$
- Let $C = \text{total number of collisions on level 1.}$

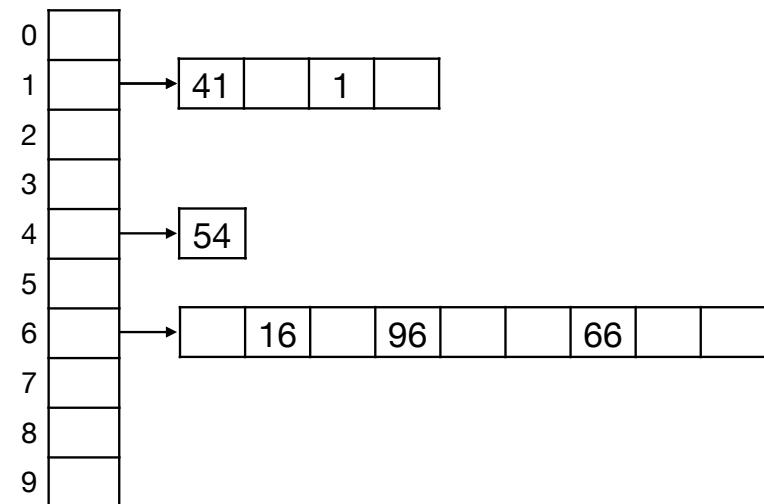
- $C = \sum \binom{|S_i|}{2}$ by construction.

- $C = O(n)$ by solution 2.

- **Space.**

$$\begin{aligned}
 O\left(n + \sum_i |S_i|^2\right) &= O\left(n + \sum_i \left(|S_i| + 2 \binom{|S_i|}{2}\right)\right) \\
 &= O\left(n + \sum_i |S_i| + 2 \sum_i \binom{|S_i|}{2}\right) = O(n + n + 2n) = O(n)
 \end{aligned}$$

$a^2 = a + 2 \binom{a}{2}$



Static Dictionaries and Perfect Hashing

- **FKS scheme.**
 - $O(n)$ space and $O(n)$ expected preprocessing time.
 - Lookups with two evaluations of a universal hash function.
- **Theorem.** We can solve the static dictionary problem for a set S of size n in
 - $O(n)$ space and $O(n)$ expected preprocessing time.
 - $O(1)$ worst-case time per lookup.
- **Multilevel data structures.**
 - FKS is example of **multilevel** data structure technique. Combine different solutions for same problem to get an improved solution.

Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

String Hashing

- Define hash function on **strings**.
- **Goals**.
 - Low **collision probability**.
 - Fast evaluation.
 - Small space.
 - Fast string **manipulation**.

String Hashing

- **Karp-Rabin Fingerprint.**
 - Let S be a string of length n . We view characters as digits and S as an integer.
 - Let p is a prime number. Pick uniformly at random integer $z \in \{0, \dots, p-1\}$.
 - The Karp-Rabin **fingerprint** of S is

$$\phi_{p,z}(S) = S[1]z^{n-1} + S[2]z^{n-2} + \dots + S[n-1]z^1 + S[n] \pmod{p}$$

$$\cdot \\ = \left(\sum_{i=1}^n S[i] \cdot z^{n-i} \right) \pmod{p}$$

- The fingerprint of S is the **polynomial** over the field Z_p evaluated at the random integer z .

String Hashing

- **Theorem.** (Collision probability) Let S and T be distinct strings of length s , and let p be a prime. For a random $z \in \{0, \dots, p-1\}$:

$$\Pr(\phi_{p,z}(S) = \phi_{p,z}(T)) \leq \frac{s}{p}$$

- **Proof.**

$$\Pr(\phi_{p,z}(S) = \phi_{p,z}(T)) = \Pr\left(\sum_{i=1}^s S[i] \cdot z^{s-i} = \sum_{i=1}^s T[i] \cdot z^{s-i} \pmod{p}\right)$$

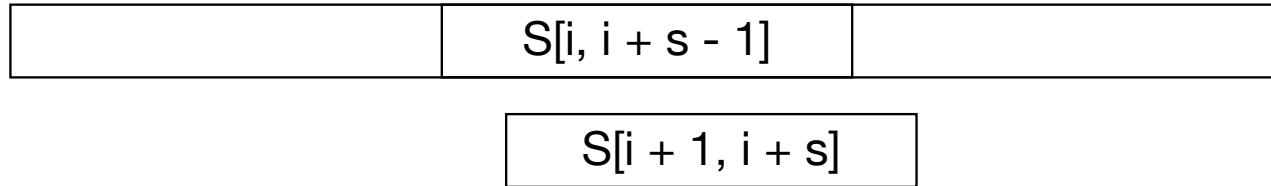
$$= \Pr\left(\sum_{i=1}^s (S[i] - T[i]) \cdot z^{s-i} = 0 \pmod{p}\right)$$

$\sum_{i=1}^s (S[i] - T[i]) \cdot z^{s-i}$ is a non-zero polynomial over Z_p of degree $s-1$.

- \Rightarrow It has at most $s-1$ roots \Rightarrow The probability that our random z is one of those is at most $(s-1)/p < s/p$.

String Hashing

- Consider substrings of S of length s .



- Fingerprint computation.** We can compute $\phi_{p,z}(S[i, i + s - 1])$ in $O(s)$ time.
 - Proof.** See exercises.
- Rolling property.** $\phi_{p,z}(S[i + 1, i + s]) = (\phi_{p,z}(S[i, i + s - 1]) - S[i]z^{s-1})z + S[i + s] \pmod{p}$
 - Proof.** See exercises.
- ⇒ We can compute $\phi_{p,z}(S[i + 1, i + s])$ from $\phi_{p,z}(S[i, i + s - 1])$ in constant time.

String Hashing

- **String matching.** Given strings S and P , determine if P is a substring in S .

$S = yabbadabbado$

$P = abba$

- **What solutions do we know?** $|P| = m$, $|S| = n$.
 - Brute force comparison: $O(nm)$ time
 - Knuth-Morris-Pratt algorithm [KMP1977]: $O(n + m)$ time.

String Hashing

$S = yabbadabbado$

$P = abba$

- **Karp-Rabin Algorithm.**
 - Pick $p \geq m^2$.
 - Compute $\phi(P)$.
 - Compute and compare $\phi(S[i, i + m - 1])$ with $\phi(P)$ for all i .
 - If fingerprints match, **verify** using **brute-force** comparison. Return “yes!” if we match.
- **Time.**
 - Let F be the number of collisions, i.e., $S[i, i + m - 1] \neq P$ but $\phi(S[i, i + m - 1]) = \phi(P)$.
 - $\Rightarrow O(n + m + Fm)$.

String Hashing

$S = yabbadabbado$

$P = abba$

- **Expected number of collisions.**
 - The probability of collision at a single substring is $m/p \leq 1/m$.
 - \Rightarrow Expected number of collision on all $n-m+1$ substrings $\leq (n-m+1)/m < n/m$.
- \Rightarrow Expected time is $O(n + m + mn/m) = O(n + m)$.

String Hashing

- **Theorem.** We can solve the string matching problem in $O(n + m)$ time expected time.
- **String matching with Karp-Rabin fingerprints.**
 - Simple, practical, fast.
 - More techniques \Rightarrow Fast reporting, small space, real-time, streaming, etc.

Hashing

- Hashing
- Dictionaries
- Perfect Hashing
- String Hashing