
Philip Bille

Hashing
• Hashing Recap

• Dictionaries

• Perfect Hashing

• String Hashing

Hashing
• Hashing Recap

• Dictionaries

• Perfect Hashing

• String Hashing

Hashing Recap
• Hash function idea.

• Want a random, crazy, chaotic function that maps a large universe to a small range. The
function should distribute the items “evenly.”

• Hash function.

• Let H be a family of functions mapping a universe U to {0, ..., m-1}.

• A hash function h is a function chosen randomly from H.

• Typically m ≪ |U|.

• Goals.

• Low collision probability: for any x≠y, we want Pr(h(x) = h(y)) to be small.

• Fast evaluation.

• Small space.

Hashing Recap
• Universal hashing.

• Let H be a family of functions mapping a universe U to {0, ..., m-1}.

• H is universal if for any x ≠ y in U and h chosen uniformly at random from H

.

• Examples.

• Multiply-mod-prime.

• with .

• Multiply-shift.

• with

Pr(𝗁(𝗑) = 𝗁(𝗒)) ≤
𝟣
𝗆

𝗁𝖺,𝖻(𝗑) = 𝖺𝗑 + 𝖻 mod 𝗉 𝖧 = {𝗁𝖺,𝖻 ∣ 𝖺 ∈ {𝟣, …, 𝗉 − 𝟣}, 𝖻 ∈ {𝟢, …, 𝗉 − 𝟣}}

𝗁𝖺(𝗑) = (𝖺𝗑 mod 𝟤𝗄) ≫ (𝗄 − 𝗅) 𝖧 = {𝗁𝖺 ∣ a is an odd integer in {𝟣, …, 𝟤𝗄 − 𝟣}}

Hashing
• Hashing Recap

• Dictionaries

• Perfect Hashing

• String Hashing

Dictionaries
• Dictionary problem. Maintain a dynamic set of integers S ⊆ U subject to following operations

• LOOKUP(x): return true if x ∈ S and false otherwise.

• INSERT(x): set S = S ∪ {x}

• DELETE(x): set S = S \ {x}

• Satellite information. Information associated with each integer.

• Applications. Lots of practical applications and key component in other algorithms and data
structures.

• Challenge. Can we get a compact data structure with fast operations.

Chained Hashing
• Chained hashing.

• Choose universal hash function h from U to {0, ..,m-1}, where m = Θ(n).

• Initialize an array A[0, ..., m-1].

• A[i] stores a linked list containing the keys in S whose hash value is i.

• Space. O(m + n) = O(n)

13

0
1
2
3
4
5
6
7
8
9

15 1

54

41

66 16 96

Chained Hashing
• Operations.

• LOOKUP(x): Compute h(x). Scan A[h(x)]. Return true if x is in list and false otherwise.

• INSERT(x): Compute h(x). Scan A[h(x)]. Add x to the front of list if it is not there already.

• DELETE(x): Compute h(x). Scan A[h(x)]. Remove x from list if it is there.

• Time. O(1 + |A[h(x)]|)

13

0
1
2
3
4
5
6
7
8
9

15 1

54

41

66 16 96

Chained Hashing
• What is the expected length of A[h(x)]?

• Let

•

• Theorem. We can solve the dictionary problem in O(n) space and constant expected time per
operation.

𝖨𝗒 = {1 if 𝗁(𝗒) = 𝗁(𝗑)
0 if 𝗁(𝗒) ≠ 𝗁(𝗑)

𝖤 (|𝖠[𝗁(𝗑)] |) = 𝖤 ∑
𝗒∈𝖲

𝖨𝗒 = ∑
𝗒∈𝖲

𝖤 (𝖨𝗒) = 𝟣 +∑
𝗒∈𝖲\{𝗑}

Pr (𝗁(𝗑) = 𝗁(𝗒)) ≤ 𝟣 + (𝗇 − 𝟣) ⋅
𝟣
𝗆

= 𝖮(𝟣)

Hashing
• Hashing

• Dictionaries

• Perfect Hashing

• String Hashing

Static Dictionaries and Perfect Hashing
• Static dictionary problem. Given a set S ⊆ U = {0,..,u-1} of size n for preprocessing support the

following operation

• LOOKUP(x): return true if x ∈ S and false otherwise.

• Challenge. Can we do better than (dynamic) dictionary solution?

• Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

• Perfect hash function in O(n) space and O(1) evaluation time ⟹ solution with O(n) space and

O(1) worst-case lookup time.

• Do perfect hash functions with O(n) space and O(1) evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing
• Goal. Perfect hashing in linear space and constant worst-case time.

• Solution in 3 steps.

• Solution 1. Collision-free but with too much space.

• Solution 2. Many collisions but linear space.

• Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines

solution 1 and 2.

Solution 1: Collision-Free, Quadratic Space

• Data structure.

• Array A of size n2.

• Universal hash function mapping U to {0, ..., n2-1}. Choose randomly during preprocessing

until collision-free on S. Store each x ∈ S at position A[h(x)].

• Space. O(n2).

0
1
2 13
3
4 41
5

98 66
99

Solution 1: Collision-Free, Quadratic Space

• Queries.

• LOOKUP(X): Check A[h(x)].

• Time. O(1).

• Preprocessing time?

0
1
2 13
3
4 41
5

98 66
99

Solution 1: Collision-Free, Quadratic Space
• Analysis.

• Let

• Let C = total number of collisions on S.

•

• ⟹ With probability 1/2 we get perfect hashing function. If not perfect try again.

• ⟹ Expected number of trials before we get a perfect hash function is O(1).

• Theorem. We can solve the static dictionary problem in

• O(n2) space and O(n2) expected time preprocessing time.

• O(1) worst-case query time.

𝖨𝗑,𝗒 = {1 if 𝗁(𝗒) = 𝗁(𝗑)
0 if 𝗁(𝗒) ≠ 𝗁(𝗑)

𝖤(𝖢) = 𝖤 ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖨𝗑,𝗒 = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖤 (𝖨𝗑,𝗒) = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

Pr (𝗁(𝗑) = 𝗁(𝗒)) ≤ (𝗇
𝟤) 𝟣

𝗇𝟤
<

𝟣
𝟤

Solution 2: Many Collisions, Linear Space.
• As solution 1 but with an array of length n. What is the expected number of collisions?

•
𝖤(𝖢) = 𝖤 ∑

𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖨𝗑,𝗒 = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖤 (𝖨𝗑,𝗒) = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

Pr (𝗁(𝗑) = 𝗁(𝗒)) ≤ (𝗇
𝟤) 𝟣

𝗇
<

𝗇
𝟤

Solution 3: FKS-Scheme.

• Data structure. Two-level solution.

• At level 1 use solution with many collisions and linear space.

• Resolve each collisions at level 1 with collision-free solution at level 2.

• Space?

0
1
2
3
4
5
6
7
8
9

41 1

16 96 66

54

Solution 3: FKS-Scheme.

• Queries.

• LOOKUP(X): Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.

• Time. O(1).

0
1
2
3
4
5
6
7
8
9

41 1

16 96 66

54

Solution 3: FKS-Scheme.
• Space analysis. What is the the total size of level 1 and level 2 hash tables?

• Let Si = {x ∈ S | h(x) = i}

• Let C = total number of collisions on level 1.

• C = by construction.

• C = O(n) by solution 2.

• Space.

•

∑ (|𝖲𝗂 |
𝟤)

𝖮 (𝗇 + ∑
𝗂

|𝖲𝗂 |
𝟤) = 𝖮 (𝗇 + ∑

𝗂
(|𝖲𝗂 | + 𝟤 (|𝖲𝗂 |

𝟤)))
= 𝖮 (𝗇 + ∑

𝗂

|𝖲𝗂 | + 𝟤∑
𝗂

(|𝖲𝗂 |
𝟤)) = 𝖮(𝗇 + 𝗇 + 𝟤𝗇) = 𝖮(𝗇)

0
1
2
3
4
5
6
7
8
9

41 1

16 96 66

54

𝖺𝟤 = 𝖺 + 𝟤 (𝖺
𝟤)

Static Dictionaries and Perfect Hashing
• FKS scheme.

• O(n) space and O(n) expected preprocessing time.

• Lookups with two evaluations of a universal hash function.

• Theorem. We can solve the static dictionary problem for a set S of size n in

• O(n) space and O(n) expected preprocessing time.

• O(1) worst-case time per lookup.

• Multilevel data structures.

• FKS is example of multilevel data structure technique. Combine different solutions for same

problem to get an improved solution.

Hashing
• Hashing Recap

• Dictionaries

• Perfect Hashing

• String Hashing

String Hashing
• Define hash function on strings.

• Goals.

• Low collision probability.

• Fast evaluation.

• Small space.

• Fast string manipulation.

String Hashing
• Karp-Rabin Fingerprint.

• Let S be a string of length n. We view characters as digits and S as an integer.

• Let p is a prime number. Pick uniformly at random integer z ∈{0, ..., p-1}.

• The Karp-Rabin fingerprint of S is

•

• The fingerprint of S is the polynomial over the field Zp evaluated at the random integer z.

ϕ𝗉,𝗓(𝖲) = 𝖲[𝟣]𝗓𝗇−𝟣 + 𝖲[𝟤]𝗓𝗇−𝟤 + ⋯ + 𝖲[𝗇 − 𝟣]𝗓𝟣 + 𝖲[𝗇] mod 𝗉

= (
𝗇

∑
𝗂=𝟣

𝖲[𝗂] ⋅ 𝗓𝗇−𝗂) mod 𝗉

String Hashing
• Theorem. (Collision probability) Let S and T be distinct strings of length s, and let p be a prime.

For a random z ∈{0, ..., p-1}:

• Proof.

•

 is a non-zero polynomial over Zp of degree s-1.

• ⇒ It has at most s-1 roots ⇒ The probability that our random z is one of those is at most
(s-1)/p < s/p.

Pr(ϕ𝗉,𝗓(𝖲) = ϕ𝗉,𝗓(𝖳)) ≤
𝗌
𝗉

Pr (ϕ𝗉,𝗓(𝖲) = ϕ𝗉,𝗓(𝖳)) = Pr (
𝗌

∑
𝗂=𝟣

𝖲[𝗂] ⋅ 𝗓𝗌−𝗂 =
𝗌

∑
𝗂=𝟣

𝖳[𝗂] ⋅ 𝗓𝗌−𝗂 mod 𝗉)
= Pr (

𝗌

∑
𝗂=𝟣

(𝖲[𝗂] − 𝖳[𝗂]) ⋅ 𝗓𝗌−𝗂 = 𝟢 mod 𝗉)
𝗌

∑
𝗂=𝟣

(𝖲[𝗂] − 𝖳[𝗂]) ⋅ 𝗓𝗌−𝗂

String Hashing
• Consider substrings of S of length s.

• Fingerprint computation. We can compute in O(s) time.

• Proof. See exercises.

• Rolling property.

• Proof. See exercises.

• ⇒ We can compute from in constant time.

ϕ𝗉,𝗓(𝖲[𝗂, 𝗂 + 𝗌 − 𝟣])

ϕ𝗉,𝗓(𝖲[𝗂 + 𝟣, 𝗂 + 𝗌]) = (ϕ𝗉,𝗓(𝖲[𝗂, 𝗂 + 𝗌 − 𝟣]) − 𝖲[𝗂]𝗓𝗌−𝟣)𝗓 + 𝖲[𝗂 + 𝗌] mod 𝗉

ϕ𝗉,𝗓(𝖲[𝗂 + 𝟣, 𝗂 + 𝗌]) ϕ𝗉,𝗓(𝖲[𝗂, 𝗂 + 𝗌 − 𝟣])

S[i, i + s - 1]

S[i + 1, i + s]

String Hashing
• String matching. Given strings S and P, determine if P is a substring in S.

• What solutions do we know? |P| = m, |S| = n.

• Brute force comparison: O(nm) time

• Knuth-Morris-Pratt algorithm [KMP1977]: O(n + m) time.

S = yabbadabbado

P = abba

String Hashing

• Karp-Rabin Algorithm.

• Pick p ≥ m2.

• Compute .

• Compute and compare with for all i.

• If fingerprints match, verify using brute-force comparison. Return “yes!” if we match.

• Time.

• Let F be the number of collisions, i.e., S[i, i + m - 1] ≠ P but = .

• ⇒ O(n + m + Fm).

ϕ(𝖯)
ϕ(𝖲[𝗂, 𝗂 + 𝗆 − 𝟣]) ϕ(𝖯)

ϕ(𝖲[𝗂, 𝗂 + 𝗆 − 𝟣]) ϕ(𝖯)

S = yabbadabbado

P = abba

String Hashing

• Expected number of collisions.

• The probability of collision at a single substring is m/p ≤ 1/m.

• ⇒ Expected number of collision on all n-m+1 substrings ≤ (n-m+1)/m < n/m.

• ⇒ Expected time is O(n + m + mn/m) = O(n + m).

S = yabbadabbado

P = abba

String Hashing
• Theorem. We can solve the string matching problem in O(n + m) time expected time.

• String matching with Karp-Rabin fingerprints.

• Simple, practical, fast.

• More techniques ⇒ Fast reporting, small space, real-time, streaming, etc.

Hashing
• Hashing

• Dictionaries

• Perfect Hashing

• String Hashing

