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Hashing Recap
• Hash function idea. 


• Want a random, crazy, chaotic function that maps a large universe to a small range. The 
function should distribute the items “evenly.” 


• Hash function. 

• Let H be a family of functions mapping a universe U to {0, ..., m-1}.  

• A hash function h is a function chosen randomly from H. 

• Typically m ≪ |U|.


• Goals.

• Low collision probability: for any x≠y, we want Pr(h(x) = h(y)) to be small. 

• Fast evaluation. 

• Small space.

Hashing Recap
• Universal hashing. 


• Let H be a family of functions mapping a universe U to {0, ..., m-1}.  

• H is universal if for any x ≠ y in U and h chosen uniformly at random from H 


.


• Examples. 

• Multiply-mod-prime. 


•  with . 

• Multiply-shift.


•  with   

Pr(𝗁(𝗑) = 𝗁(𝗒)) ≤
𝟣
𝗆

𝗁𝖺,𝖻(𝗑) = 𝖺𝗑 + 𝖻 mod 𝗉 𝖧 = {𝗁𝖺,𝖻 ∣ 𝖺 ∈ {𝟣, …, 𝗉 − 𝟣}, 𝖻 ∈ {𝟢, …, 𝗉 − 𝟣}}

𝗁𝖺(𝗑) = (𝖺𝗑 mod 𝟤𝗄) ≫ (𝗄 − 𝗅) 𝖧 = {𝗁𝖺 ∣ a is an odd integer in {𝟣, …, 𝟤𝗄 − 𝟣}}
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Dictionaries
• Dictionary problem. Maintain a dynamic set of integers S ⊆ U subject to following operations


• LOOKUP(x): return true if x ∈ S and false otherwise.

• INSERT(x): set S = S ∪ {x}

• DELETE(x): set S = S \ {x}


• Satellite information. Information associated with each integer.


• Applications. Lots of practical applications and key component in other algorithms and data 
structures. 


• Challenge. Can we get a compact data structure with fast operations.

Chained Hashing
• Chained hashing. 


• Choose universal hash function h from U to {0, ..,m-1}, where m = Θ(n).

• Initialize an array A[0, ..., m-1].

• A[i] stores a linked list containing the keys in S whose hash value is i.


• Space. O(m + n) = O(n) 
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Chained Hashing
• Operations.

• LOOKUP(x): Compute h(x). Scan A[h(x)]. Return true if x is in list and false otherwise.

• INSERT(x): Compute h(x). Scan A[h(x)]. Add x to the front of list if it is not there already.

• DELETE(x): Compute h(x). Scan A[h(x)]. Remove x from list if it is there.


• Time. O(1 + |A[h(x)]|)
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Chained Hashing
• What is the expected length of A[h(x)]?


• Let  


• 


• Theorem. We can solve the dictionary problem in O(n) space and constant expected time per 
operation. 

𝖨𝗒 = {1  if 𝗁(𝗒) = 𝗁(𝗑)
0  if 𝗁(𝗒) ≠ 𝗁(𝗑)

𝖤 ( |𝖠[𝗁(𝗑)] |) = 𝖤 ∑
𝗒∈𝖲

𝖨𝗒 = ∑
𝗒∈𝖲

𝖤 (𝖨𝗒) = 𝟣 +∑
𝗒∈𝖲\{𝗑}

Pr (𝗁(𝗑) = 𝗁(𝗒)) ≤ 𝟣 + (𝗇 − 𝟣) ⋅
𝟣
𝗆

= 𝖮(𝟣)
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Static Dictionaries and Perfect Hashing
• Static dictionary problem. Given a set S ⊆ U = {0,..,u-1} of size n for preprocessing support the 

following operation 

• LOOKUP(x): return true if x ∈ S and false otherwise.


• Challenge. Can we do better than (dynamic) dictionary solution?


• Perfect Hashing. A perfect hash function for S is a collision-free hash function on S. 

• Perfect hash function in O(n) space and O(1) evaluation time ⟹ solution with O(n) space and 

O(1) worst-case lookup time.

• Do perfect hash functions with O(n) space and O(1) evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing
• Goal. Perfect hashing in linear space and constant worst-case time.

• Solution in 3 steps.


• Solution 1. Collision-free but with too much space.

• Solution 2. Many collisions but linear space.

• Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines 

solution 1 and 2.



Solution 1: Collision-Free, Quadratic Space

• Data structure. 

• Array A of size n2. 

• Universal hash function mapping U to {0, ..., n2-1}. Choose randomly during preprocessing 

until collision-free on S. Store each x ∈ S at position A[h(x)].

• Space. O(n2). 
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Solution 1: Collision-Free, Quadratic Space

• Queries.

• LOOKUP(X): Check A[h(x)]. 


• Time. O(1). 

• Preprocessing time? 
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Solution 1: Collision-Free, Quadratic Space
• Analysis.


• Let 


• Let C = total number of collisions on S.


• 


• ⟹ With probability 1/2 we get perfect hashing function. If not perfect try again.

• ⟹ Expected number of trials before we get a perfect hash function is O(1).

• Theorem. We can solve the static dictionary problem in 


• O(n2) space and O(n2) expected time preprocessing time. 

• O(1) worst-case query time. 

𝖨𝗑,𝗒 = {1  if 𝗁(𝗒) = 𝗁(𝗑)
0  if 𝗁(𝗒) ≠ 𝗁(𝗑)

𝖤(𝖢) = 𝖤 ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖨𝗑,𝗒 = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖤 (𝖨𝗑,𝗒) = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

Pr (𝗁(𝗑) = 𝗁(𝗒)) ≤ (𝗇
𝟤) 𝟣

𝗇𝟤
<

𝟣
𝟤

Solution 2: Many Collisions, Linear Space.
• As solution 1 but with an array of length n. What is the expected number of collisions? 


•
𝖤(𝖢) = 𝖤 ∑

𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖨𝗑,𝗒 = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

𝖤 (𝖨𝗑,𝗒) = ∑
𝗑,𝗒∈𝖲,𝗑≠𝗒

Pr (𝗁(𝗑) = 𝗁(𝗒)) ≤ (𝗇
𝟤) 𝟣

𝗇
<

𝗇
𝟤



Solution 3: FKS-Scheme.

• Data structure. Two-level solution.

• At level 1 use solution with many collisions and linear space.

• Resolve each collisions at level 1 with collision-free solution at level 2.


• Space? 
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Solution 3: FKS-Scheme.

• Queries.

• LOOKUP(X): Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.


• Time. O(1). 
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Solution 3: FKS-Scheme.
• Space analysis. What is the the total size of level 1 and level 2 hash tables?


• Let Si = {x ∈ S | h(x) = i} 

• Let C = total number of collisions on level 1. 


• C =  by construction. 


• C = O(n) by solution 2. 


• Space.


•

∑ ( |𝖲𝗂 |
𝟤 )

𝖮 (𝗇 + ∑
𝗂

|𝖲𝗂 |
𝟤 ) = 𝖮 (𝗇 + ∑

𝗂
( |𝖲𝗂 | + 𝟤 ( |𝖲𝗂 |

𝟤 )))
= 𝖮 (𝗇 + ∑

𝗂

|𝖲𝗂 | + 𝟤∑
𝗂

( |𝖲𝗂 |
𝟤 )) = 𝖮(𝗇 + 𝗇 + 𝟤𝗇) = 𝖮(𝗇)
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𝖺𝟤 = 𝖺 + 𝟤 (𝖺
𝟤)

Static Dictionaries and Perfect Hashing
• FKS scheme.


• O(n) space and O(n) expected preprocessing time.

• Lookups with two evaluations of a universal hash function.


• Theorem. We can solve the static dictionary problem for a set S of size n in

• O(n) space and O(n) expected preprocessing time.

• O(1) worst-case time per lookup.


• Multilevel data structures.

• FKS is example of multilevel data structure technique. Combine different solutions for same 

problem to get an improved solution. 
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String Hashing
• Define hash function on strings. 

• Goals.


• Low collision probability. 

• Fast evaluation. 

• Small space.

• Fast string manipulation. 

String Hashing
• Karp-Rabin Fingerprint. 


• Let S be a string of length n. We view characters as digits and S as an integer. 

• Let p is a prime number. Pick uniformly at random integer z ∈{0, ..., p-1}.   

• The Karp-Rabin fingerprint of S is


•



• The fingerprint of S is the polynomial over the field Zp evaluated at the random integer z. 

ϕ𝗉,𝗓(𝖲) = 𝖲[𝟣]𝗓𝗇−𝟣 + 𝖲[𝟤]𝗓𝗇−𝟤 + ⋯ + 𝖲[𝗇 − 𝟣]𝗓𝟣 + 𝖲[𝗇] mod 𝗉

= (
𝗇

∑
𝗂=𝟣

𝖲[𝗂] ⋅ 𝗓𝗇−𝗂) mod 𝗉

String Hashing
• Theorem. (Collision probability) Let S and T be distinct strings of length s, and let p be a prime.  

For a random z ∈{0, ..., p-1}:  





• Proof. 


•

  is a non-zero polynomial over Zp of degree s-1.


• ⇒ It has at most s-1 roots ⇒ The probability that our random z is one of those is at most 
(s-1)/p < s/p.   

Pr(ϕ𝗉,𝗓(𝖲) = ϕ𝗉,𝗓(𝖳)) ≤
𝗌
𝗉

Pr (ϕ𝗉,𝗓(𝖲) = ϕ𝗉,𝗓(𝖳)) = Pr (
𝗌

∑
𝗂=𝟣

𝖲[𝗂] ⋅ 𝗓𝗌−𝗂 =
𝗌

∑
𝗂=𝟣

𝖳[𝗂] ⋅ 𝗓𝗌−𝗂 mod 𝗉)
= Pr (

𝗌

∑
𝗂=𝟣

(𝖲[𝗂] − 𝖳[𝗂]) ⋅ 𝗓𝗌−𝗂 = 𝟢 mod 𝗉)
𝗌

∑
𝗂=𝟣

(𝖲[𝗂] − 𝖳[𝗂]) ⋅ 𝗓𝗌−𝗂



String Hashing
• Consider substrings of S of length s. 


• Fingerprint computation.  We can compute  in O(s) time.  

• Proof. See exercises. 


• Rolling property.  

• Proof. See exercises. 


• ⇒ We can compute  from  in constant time. 

ϕ𝗉,𝗓(𝖲[𝗂, 𝗂 + 𝗌 − 𝟣])

ϕ𝗉,𝗓(𝖲[𝗂 + 𝟣, 𝗂 + 𝗌]) = (ϕ𝗉,𝗓(𝖲[𝗂, 𝗂 + 𝗌 − 𝟣]) − 𝖲[𝗂]𝗓𝗌−𝟣)𝗓 + 𝖲[𝗂 + 𝗌] mod 𝗉

ϕ𝗉,𝗓(𝖲[𝗂 + 𝟣, 𝗂 + 𝗌]) ϕ𝗉,𝗓(𝖲[𝗂, 𝗂 + 𝗌 − 𝟣])

S[i, i + s - 1]

S[i + 1, i + s]

String Hashing
• String matching. Given strings S and P, determine if P is a substring in S. 


• What solutions do we know? |P| = m, |S| = n.

• Brute force comparison: O(nm) time 

• Knuth-Morris-Pratt algorithm [KMP1977]: O(n + m)  time. 

S = yabbadabbado

P = abba

String Hashing

• Karp-Rabin Algorithm. 

• Pick p ≥ m2.

• Compute . 

• Compute and compare  with  for all i. 

• If fingerprints match, verify using brute-force comparison. Return “yes!” if we match. 


• Time. 

• Let F be the number of collisions, i.e.,  S[i, i + m - 1] ≠ P but   = .  

• ⇒ O(n + m + Fm).  

ϕ(𝖯)
ϕ(𝖲[𝗂, 𝗂 + 𝗆 − 𝟣]) ϕ(𝖯)

ϕ(𝖲[𝗂, 𝗂 + 𝗆 − 𝟣]) ϕ(𝖯)

S = yabbadabbado

P = abba

String Hashing

• Expected number of collisions. 

• The probability of collision at a single substring is m/p ≤ 1/m. 

• ⇒ Expected number of collision on all n-m+1 substrings ≤  (n-m+1)/m < n/m.


• ⇒ Expected time is O(n + m + mn/m) = O(n + m).  

S = yabbadabbado

P = abba



String Hashing
• Theorem. We can solve the string matching problem in O(n + m) time expected time. 


• String matching with Karp-Rabin fingerprints.

• Simple, practical, fast. 

• More techniques ⇒ Fast reporting, small space, real-time, streaming, etc.  
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• Hashing

• Dictionaries

• Perfect Hashing

• String Hashing


