Hashing

+ Hashing Recap
- Dictionaries

- Perfect Hashing
- String Hashing

Philip Bille

Hashing

- Hashing Recap

Hashing Recap

- Hash function idea.

+ Want a random, crazy, chaotic function that maps a large universe to a small range. The
function should distribute the items “evenly.”

+ Hash function.
+ Let H be a family of functions mapping a universe U to {0, ..., m-1}.
+ A hash function h is a function chosen randomly from H.
- Typically m « |U|.

- Goals.
+ Low collision probability: for any xzy, we want Pr(h(x) = h(y)) to be small.
+ Fast evaluation.
- Small space.

Hashing Recap

- Universal hashing.
- Let H be a family of functions mapping a universe U to {0, ..., m-1}.
+ His universal if for any x # y in U and h chosen uniformly at random from H

1
Pr(h(x) = h(y)) < —.
m

- Examples.
+ Multiply-mod-prime.
- h,,(x) =ax+b mod pwithH={h,,|a€ {1,....p-1},b€{0,...,p—1}}.
+ Multiply-shift.
- h,(x) = (ax mod 2¥) 3> (k —) with H = {h, | ais an odd integer in {1, ...,2K = 1}}

Hashing

Dictionaries

- Dictionaries

- Dictionary problem. Maintain a dynamic set of integers S ¢ U subject to following operations
- LOOKUP(x): return true if x € S and false otherwise.
- INSERT(x): set S =S u {x}
-+ DELETE(x): set S = S\ {x}

- Satellite information. Information associated with each integer.

- Applications. Lots of practical applications and key component in other algorithms and data
structures.

- Challenge. Can we get a compact data structure with fast operations.

Chained Hashing

+ Chained hashing.

- Choose universal hash function h from U to {0, ..,m-1}, where m = O(n).

+ Initialize an array A[O, ..., m-1].
-+ Ali] stores a linked list containing the keys in S whose hash value is i.

—la—{1]

—[13]
| —ls4]

(e} —[16]—[o6]

© ® N O A WN 4O

- Space. O(m + n) = O(n)

Chained Hashing

» Operations.
+ LOOKUP(x): Compute h(x). Scan A[h(x)]. Return true if x is in list and false otherwise.
+ INSERT(x): Compute h(x). Scan A[h(x)]. Add x to the front of list if it is not there already.
+ DELETE(x): Compute h(x). Scan A[h(x)]. Remove x from list if it is there.

| ~lal—{1]

—13]
|_—ls4]

—{e6}—[16]—"c6]

© ® N O A WN 4 O

- Time. O(1 + |A[h(X)]])

Chained Hashing

+ What is the expected length of A[h(x)]?

_f1if h(y) = h(x)
- Letl, = {0 if h(y) # h(x)

1
- E(JAMGI]) =E| Y1, =ZE<Iy>=1+ZPr(h(x)=h(y))S1+(n—1)~;=0(1)

y€eSs y€eS yeS\{x}

+ Theorem. We can solve the dictionary problem in O(n) space and constant expected time per
operation.

Hashing

- Perfect Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set S ¢ U = {0,..,u-1} of size n for preprocessing support the
following operation
+ LOOKUP(x): return true if x € S and false otherwise.

- Challenge. Can we do better than (dynamic) dictionary solution?

-+ Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.

- Perfect hash function in O(n) space and O(1) evaluation time = solution with O(n) space and
O(1) worst-case lookup time.

- Do perfect hash functions with O(n) space and O(1) evaluation time exist for any set S?

Static Dictionaries and Perfect Hashing

+ Goal. Perfect hashing in linear space and constant worst-case time.
- Solution in 3 steps.

-+ Solution 1. Collision-free but with too much space.

- Solution 2. Many collisions but linear space.

- Solution 3: FKS scheme [Fredman, Komlds, Szemerédi 1984]. Two-level solution. Combines
solution 1 and 2.

Solution 1: Collision-Free, Quadratic Space

Solution 1: Collision-Free, Quadratic Space

- Data structure.
- Array A of size n2,

-+ Universal hash function mapping U to {0, ..., n2-1}. Choose randomly during preprocessing
until collision-free on S. Store each x € S at position A[h(x)].

- Space. O(n?).

- Queries.

- LOOKUP(X): Check A[h(x)].
- Time. O(1).
- Preprocessing time?

Solution 1: Collision-Free, Quadratic Space

- Analysis.

_ 1 ifh(y) = h(x)
L tethy = {0 h(y) # hx)

-+ Let C = total number of collisions on S.

CEO=E| DI, |=)E (Ix,y> = > Pr(h(0 =h(y) <

X,YES x#£y X,YES x#£y X,YES XY

- = With probability 1/2 we get perfect hashing function. If not perfect try again.

n1<
2/ n?

- = Expected number of trials before we get a perfect hash function is O(1).

+ Theorem. We can solve the static dictionary problem in

+ O(n?) space and O(n2) expected time preprocessing time.

+ O(1) worst-case query time.

1
2

Solution 2: Many Collisions, Linear Space.

- As solution 1 but with an array of length n. What is the expected number of collisions?

EO=E| Y 1,|=YE (ngy) =Y Pr(h(x) = h(y)) < (;) % <%

X,YES, x#y X,YES, X£Y X,YES, x#y

Solution 3: FKS-Scheme.

S
[T
S Tl Tl T sl T

- Data structure. Two-level solution.

+ Atlevel 1 use solution with many collisions and linear space.

- Resolve each collisions at level 1 with collision-free solution at level 2.
- Space?

Solution 3: FKS-Scheme.

I FIEN
[—{s4]

— [16] Jee[[fee[[|

© ® N O A WN 4 O

- Queries.
- LOOKUP(X): Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Time. O(1).

Solution 3: FKS-Scheme.

- Space analysis. What is the the total size of level 1 and level 2 hash tables?
- LetSi={xe S|h(x) =i} T

+ C = O(n) by solution 2.

0
+ Let C = total number of collisions on level 1. 1 : (a1] 1]]
2
IS | o]
. C =Z (i > by construction. Q-H
2 L
s [Twe] Jee[[Tes[[|
7
8
9

T ey E
O<n+zi:|$i|2> =O<n+Z<'Si'+2<|§l))>

o<n+z|si|+22<'§'>>=0<n+n+2n>=0<n>

Static Dictionaries and Perfect Hashing

- FKS scheme.
+ O(n) space and O(n) expected preprocessing time.
- Lookups with two evaluations of a universal hash function.

- Theorem. We can solve the static dictionary problem for a set S of size n in
+ O(n) space and O(n) expected preprocessing time.
- O(1) worst-case time per lookup.

+ Muiltilevel data structures.

- FKS is example of multilevel data structure technique. Combine different solutions for same
problem to get an improved solution.

Hashing

String Hashing

- String Hashing

- Define hash function on strings.
- Goals.

- Low collision probability.

- Fast evaluation.

- Small space.

+ Fast string manipulation.

String Hashing

- Karp-Rabin Fingerprint.
- Let S be a string of length n. We view characters as digits and S as an integer.
- Let p is a prime number. Pick uniformly at random integer z €{0, ..., p-1}.

+ The Karp-Rabin fingerprint of S is

$p(S) =S[112" "+ 8[2]2" % + -+ + S[n — 1]z' + S[n] mod p

= <Z SIi] .zn—i> mod p
i=1

+ The fingerprint of S is the polynomial over the field Z, evaluated at the random integer z.

String Hashing
- Theorem. (Collision probability) Let S and T be distinct strings of length s, and let p be a prime.
For a random z €{0, ..., p-1}:

Pr(¢h, (S) = ¢hp(T) < %
- Proof.

Pr (¢p,z(s) = ¢p,z(T)) =Pr < Z S['] . ZS_i = Z T[|] . ZS_i mod p>

i=1 i=1

=Pr < D (Sl =Tl - 27 =0 mod p>

i=1
S
Z (S[i] = T[i]) - 7' is a non-zero polynomial over Z, of degree s-1.
i=1
+ = It has at most s-1 roots = The probability that our random z is one of those is at most

(s-1)/p < s/p.

String Hashing

- Consider substrings of S of length s.

] | Shi+s-1 |

Sli+1,i+9]

. Fingerprint computation. We can compute (/)p’Z(S[i, i+s—1])inO(s) time.
-+ Proof. See exercises.

- Rolling property. ¢, ,(S[i+ 1,i+s]) = (¢ (Sli,i+s—1]) - S[i1z Nz + S[i+s] mod p
- Proof. See exercises.

. = We can compute (f)p’Z(S[i +1,i+s]) from (ﬁp’Z(S[i, i +s— 1]) in constant time.

String Hashing

- String matching. Given strings S and P, determine if P is a substring in S.

S = yabbadabbado
P = abba

- What solutions do we know? |P| =m, |S| = n.
- Brute force comparison: O(nm) time
+ Knuth-Morris-Pratt algorithm [KMP1977]: O(n + m) time.

String Hashing

S = yabbadabbado
P = abba

- Karp-Rabin Algorithm.
+ Pick p=m2.
- Compute ¢(P).
- Compute and compare ¢(S[i, i + m — 1]) with ¢(P) for all i.
+ If fingerprints match, verify using brute-force comparison. Return “yes!” if we match.
+ Time.
- Let F be the number of collisions, i.e., S[i, i+ m - 1] = P but ¢(S[i,i + m — 1]) = ¢$(P).
+ =0+ m+Fm).

String Hashing

S = yabbadabbado
P = abba

- Expected number of collisions.
- The probability of collision at a single substring is m/p < 1/m.
- = Expected number of collision on all n-m+1 substrings < (n-m+1)/m < n/m.

- = Expected time is O(n + m + mn/m) = O(n + m).

String Hashing

- Theorem. We can solve the string matching problem in O(n + m) time expected time.

+ String matching with Karp-Rabin fingerprints. HaShiﬂg
- Simple, practical, fast.
- More techniques = Fast reporting, small space, real-time, streaming, etc. - Hashing
- Dictionaries

- Perfect Hashing
+ String Hashing

