
Philip Bille

Radix and Suffix Sorting
• Radix Sort

• Suffix Sort

Radix and Suffix Sorting
• Radix Sort

• Suffix Sort

Radix Sort
• Sorting small universes. Given a sequence of n integers from a universe U = {0, 1, ..., u-1}.

• How fast can we sort sequence if the size of the universe is not too big?

• Algorithm. Count 0s and 1s.

• Time. O(n).

Radix Sort

0
0
1
0
0
1
0
1
0
1

0
0
0
0
0
0
1
1
1
1

n = 10, U = {0,1}

Radix Sort

• Algorithm. Insert into array of linked list + traverse array of linked list.

• Time. O(n + u) = O(n)

• Sorting can be stable.

7
5
1
2
2
4
0
4
9
7

n = 10, U = {0,1, ..., n-1 = 9}

1
0
1
2
2
4
4
5
7
7
9

0

2 2

4 4

7 7

5

9

• Radix Sort. Sort on each digit from right to left using stable sort.

• Time. O(n + n + n) = O(n)

Radix Sort

002
024
045
066
075
090
170
200
802
905

170
045
075
090
802
024
002
066
200
905

n = 10, U = {0, ..., n3 - 1 = 999}

170
090
200
802
002
024
045
075
905
066

200
802
002
905
024
045
066
170
075
090

Radix Sort
• Radix Sort [Hollerith 1887]. Sort sequence of n integers from U = {0, ..., nk-1}.

• Write each element in sequence as a base n integer x = (x1, x2, .., xk)

• Sort sequence according to each digit from right to left. Sorting should be stable.

• Time. O(nk)

Radix and Suffix Sorting
• Radix Sort

• Suffix Sort

Suffix Sort
• Suffix sorting. Given string S of length n over alphabet Σ, compute the sorted lexicographic

order of all suffixes of S.

• Theorem [Kasai et al. 2001]. Given the sorted lexicographic order of suffixes of S, we can
construct the suffix tree for S in linear time.

$
abbadabbado$
abbado$
adabbado$
ado$
badabbado$
bado$
bbadabbado$
bbado$
dabbado$
do$
o$
yabbadabbado$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

3

4

5

6

7

8

9

10
11

12

0

1

8

9

5

4

7

6

2

3

10
11

12

Rank of each
suffix

Suffixes in
sorted order

Suffix Sort
• Suffix trees and sorting. The lexicographic order of the suffixes is the same ordering as suffixes

in the leaves of the suffix tree.

• Suffix array. The array of the sorted order of the suffixes.

b
b
a
d

a

d

a
b
b
a
d
o
$

o
$

a
d

a
b
b
a
d
o
$

o
$

a
b
b
a
d
o
$

o
$

a
b
b
a
d
o
$

o
$

b
a
d

d

a
b
b
a
d
o
$

o
$

o
$ y

a
b
b
a
d
a
b
b
a
d
o
$

1

6

4

9

3

8

2

7

5

10

11

0

$

12

b

12 1 6 4 9 3 8 2 7 5 10 11 0

Suffix Sort
• Goal. Compute the lexicographic order of all suffixes of S fast.

• For simplicity assume |Σ| = O(n)

• Solution in 3 steps.

• Solution 1: Radix sorting

• Solution 2: Prefix doubling

• Solution 3: Difference cover sampling

Solution 1: Radix Sort
• Radix Sort.

• Generate all suffixes (pad with $).

• Radix sort.

• Time. O(n2)

yabbadabbado$
abbadabbado$$
bbadabbado$$$
badabbado$$$$
adabbado$$$$$
dabbado$$$$$$
abbado$$$$$$$
bbado$$$$$$$$
bado$$$$$$$$$
ado$$$$$$$$$$
do$$$$$$$$$$$
o$$$$$$$$$$$$
$$$$$$$$$$$$$

Solution 2: Prefix Doubling
• Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4,

8, ..., n. Each step uses radix sort on pair from previous step.

• Time. O(n log n)

84
13
42
35
21
54
13
42
36
27
60
70
00

yabb
abba
bbad

dabb

$$$$
o$$$

bada
adab

abba
bbad
bado

do$$
ado$

y
a
b
b
a
d
a
b
b
a
d
o
$

51
12
22
21
13
31
12
22
21
13
34
40
00

ya
ab
bb

da

$$
o$

ba
ad

ab
bb
ba

do
ad

0

1

1

2

3

4

5

6

6

7

8
9

10

0

1

1

2

2

3

3

4

4

5

6
7

8

0

1

1

1

1

2

2

2

2

3

3
4

5

Solution 3: Difference Cover Sampling
• DC3 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:

• Step 1. Sort sample suffixes.

• Sample all suffixes starting at positions i = 1 mod 3 and i = 2 mod 3.

• Recursively sort sample suffixes.

• Step 2. Sort non-sample suffixes.

• Sort the remaining suffixes (starting at positions i = 0 mod 3).

• Step 3. Merge.

• Merge sample and non-sample suffixes.

Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

1

4

7

10

Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$
bba
dab
bad
o$$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

2

5

8

11

Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$
bba
dab
bad
o$$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

String of length 2n/3
over alphabet of size σ3

Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$
bba
dab
bad
o$$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

String of length 2n/3
over alphabet of size σ3

Replace characters
by their rank...
and suffix sort
recursively!

0

3

1
4
6

7
2
5

Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$
bba
dab
bad
o$$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

String of length 2n/3
over alphabet of size σ3

Replace characters
by their rank...
and suffix sort
recursively!

0

3

1
4
6

7
2
5

0
3

1

4

6
7

2

5

Step 2: Sort Non-Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$

0
3

1
5

4
2

6
7

y0

b1

a4

a6

4

3

2

1

0$

Step 3: Merge

0
3

1
5

4
2

6
7

4

3

2

1

0

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

Step 3: Merge

0
3

1
5

4
2

6
7

4

3

2

1

0

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1a3

a4

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2a4

a5

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

a6

a5 3

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ad7
ba6

3

4

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ba5

ba6

3

4

5

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ya3

ba6

3

4

5

6

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ya3

bb1

3

4

5

6

7
0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

b2

3

4

5

6

7

8

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ya3

da4
3

4

5

6

7

8

9

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

d7

3

4

5

6

7

8

9

10

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

o0

3

4

5

6

7

8

9

10
11

0
3

1
5

4
2

6
7

4

3

2

1

0

Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

3

4

5

6

7

8

9

10
11

12
0
3

1
5

4
2

6
7

4

3

2

1

0

Solution 3: Difference Cover Sampling
• DC3 Algorithm. Sort suffixes in three steps:

• Step 1. Sort sample suffixes.

• Sample all suffixes starting at positions i = 1 mod 3 and i = 2 mod 3.

• Recursively sort sample suffixes.

• Step 2. Sort non-sample suffixes.

• Sort the remaining suffixes (starting at positions i = 0 mod 3).

• Step 3. Merge.

• Merge sample and non-sample suffixes.

• T(n) = time to suffix sort a string of length n over alphabet of size n

• Time. T(n) = T(2n/3) + O(n) = O(n)

O(n)
T(2n/3)

O(n)

O(n)

n suffixes

 sample suffixes
𝟤
𝟥

𝗇

 non-sample suffixes
𝟣
𝟥

𝗇

 sample suffixes(𝟤
𝟥)

𝟤

𝗇 =
𝟦
𝟫

𝗇
 sample suffixes(𝟤

𝟥)
𝟥

𝗇 =
𝟪

𝟤𝟩
𝗇

 non-sample suffixes(𝟤
𝟥) (𝟣

𝟥) 𝗇 =
𝟤
𝟫

𝗇

 non-sample

suffixes
(𝟦

𝟫) (𝟣
𝟥) 𝗇 =

𝟦
𝟤𝟩

𝗇

Solution 3: Difference Cover Sampling
• Theorem. We can suffix sort a string of length n over alphabet Σ of size n in time O(n).

• Theorem. We can suffix sort a string of length n over alphabet Σ O(sort(n, |Σ|)) time.

Radix and Suffix Sorting
• Radix Sort

• Suffix Sort

