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Radix Sort

- Sorting small universes. Given a sequence of n integers from a universe U = {0, 1, ..., u-1}.
How fast can we sort sequence if the size of the universe is not too big?



Radix Sort

- Algorithm. Count Os and 1s.
- Time. O(n).
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Radix Sort

N OO IN(—=|01(N

n=10,U={0,1, ..., n-1=9}
10
{1
» 2 | 2

1 9

OINNOWWWB~|AIDDIND|=|O

- Algorithm. Insert into array of linked list + traverse array of linked list.

« Time. O(n + u) = O(n)
- Sorting can be stable.




Radix Sort
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-+ Radix Sort. Sort on each digit from right to left using stable sort.
* Time. O(n + n + n) = O(n)



Radix Sort

- Radix Sort [Hollerith 1887]. Sort sequence of n integers from U = {0, ..., nk-1}.

- Write each element in sequence as a base n integer x = (X1, X2, .., X

- Sort sequence according to each digit from right to left. Sorting should be stable.
- Time. O(nk)
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- Suffix Sort



Suffix Sort

- Suffix sorting. Given string S of length n over alphabet 2, compute the sorted lexicographic
order of all suffixes of S.
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- Theorem [Kasai et al. 2001]. Given the sorted lexicographic order of suffixes of S, we can
construct the suffix tree for S in linear time.



Suffix Sort

Suffix trees and sorting. The lexicographic order of the suffixes is the same ordering as suffixes
in the leaves of the suffix tree.

Suffix array. The array of the sorted order of the suffixes.
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Suffix Sort

- Goal. Compute the lexicographic order of all suffixes of S fast.
- For simplicity assume |X| = O(n)
- Solution in 3 steps.

- Solution 1: Radix sorting

- Solution 2: Prefix doubling

- Solution 3: Difference cover sampling



Solution 1: Radix Sort

- Radix Sort.
- Generate all suffixes (pad with $).

- Radix sort.
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- Time. O(n?)



Solution 2: Prefix Doubling

Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4,
8, ..., n. Each step uses radix sort on pair from previous step.

S LY 8 |51 |ya 10 [ 84 | yabb
1 ]a 1 [12 ] ab 1 [13| abba
2 |b 4 [22]bb 6 [42] bbad
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« Time. O(n log n)



Solution 3: Difference Cover Sampling

- DC3 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:

- Step 1. Sort sample suffixes.
- Sample all suffixes starting at positions i =1 mod 3 and i =2 mod 3.
- Recursively sort sample suffixes.

- Step 2. Sort non-sample suffixes.
- Sort the remaining suffixes (starting at positions i = 0 mod 3).

- Step 3. Merge.
- Merge sample and non-sample suffixes.



Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 2: Sort Non-Sample Suffixes
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Solution 3: Difference Cover Sampling

- DC3 Algorithm. Sort suffixes in three steps:
- Step 1. Sort sample suffixes.
- Sample all suffixes starting at positionsi=1mod3andi=2mod3. O(n)

- Recursively sort sample suffixes. T(2n/3)
- Step 2. Sort non-sample suffixes.
- Sort the remaining suffixes (starting at positions i = 0 mod 3). O(n)

- Step 3. Merge.
- Merge sample and non-sample suffixes.
- T(n) = time to suffix sort a string of length n over alphabet of size n

+ Time. T(n) = T(2n/3) + O(n) = O(n)
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Solution 3: Difference Cover Sampling

- Theorem. We can suffix sort a string of length n over alphabet X of size n in time O(n).

- Theorem. We can suffix sort a string of length n over alphabet > O(sort(n, |Z[)) time.
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