Radix and Suffix Sorting

- Radix Sort
- Suffix Sort

Philip Bille

Radix and Suffix Sorting

- Radix Sort

Radix Sort

- Sorting small universes. Given a sequence of n integers from a universe U = {0, 1, ..., u-1}.
How fast can we sort sequence if the size of the universe is not too big?

Radix Sort

- Algorithm. Count Os and 1s.
- Time. O(n).

- 1O, O(_O|IO|=|O|O

n=10, U ={0,1}

|22 |20 0000 |O

Radix Sort

N OO IN(—=|01(N

n=10,U={0,1, ..., n-1=9}
10
{1
» 2 | 2

1 9

OINNOWWWB~|AIDDIND|=|O

- Algorithm. Insert into array of linked list + traverse array of linked list.

« Time. O(n + u) = O(n)
- Sorting can be stable.

Radix Sort

n=10,U=1{0, .., n3-1=999)

170 170 200 002
045 090 802 024
075 Jop 002 045
090 80P 905 066
802 oop 0p4 075
0od] " g2a] ™ [ois] ™ [o90
002 045 066 170
066 076 170 200
200 905 075 802
905 06b 090 905

-+ Radix Sort. Sort on each digit from right to left using stable sort.
* Time. O(n + n + n) = O(n)

Radix Sort

- Radix Sort [Hollerith 1887]. Sort sequence of n integers from U = {0, ..., nk-1}.

- Write each element in sequence as a base n integer x = (X1, X2, .., X

- Sort sequence according to each digit from right to left. Sorting should be stable.
- Time. O(nk)

Radix and Suffix Sorting

- Suffix Sort

Suffix Sort

- Suffix sorting. Given string S of length n over alphabet 2, compute the sorted lexicographic
order of all suffixes of S.

$
abbadabbado$

abbado$

adabbado$

ado$

badabbado$ L
vacos S,
bbadabbado$

bbado$

dabbado$

do$

0$

yabbadabbado$

—

OO0 P,~POOON OWOIN2DN

v
™~
N

O 200NN WORrMO =

Rank of each
suffix

£ 2N

—_— =k

Y
v

AHO Q| |T|T| Q|0 |T|00 1<

- Theorem [Kasai et al. 2001]. Given the sorted lexicographic order of suffixes of S, we can
construct the suffix tree for S in linear time.

Suffix Sort

Suffix trees and sorting. The lexicographic order of the suffixes is the same ordering as suffixes
in the leaves of the suffix tree.

Suffix array. The array of the sorted order of the suffixes.

12

€O QT T
—
o
€O OV T TOH O TUT LI

oco—

Suffix Sort

- Goal. Compute the lexicographic order of all suffixes of S fast.
- For simplicity assume |X| = O(n)
- Solution in 3 steps.

- Solution 1: Radix sorting

- Solution 2: Prefix doubling

- Solution 3: Difference cover sampling

Solution 1: Radix Sort

- Radix Sort.
- Generate all suffixes (pad with $).

- Radix sort.

yabbadabbado$
abbadabbado$
bbadabbado$
badabbado$
adabbado$
dabbado$
abbado$
bbado$

bado$

ado$

do$

o$

$

- Time. O(n?)

Solution 2: Prefix Doubling

Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4,
8, ..., n. Each step uses radix sort on pair from previous step.

S LY 8 |51 |ya 10 [84 | yabb
1]a 1 [12] ab 1 [13| abba
2 |b 4 [22]bb 6 [42] bbad
2 |b 3 [21]ba 4 |35 | bada
1]1a 2 [13] ad o [21 | adab
3 |d 5 [31]|da 7 |54 | dabb
1 [a 1 |12]ab 1 [13]abba «ccc....
2 |b 4 [22]bb 6 |427 bbad
2 |b 3 [21 | ba 5 [36 | bado
1 [a 2 |13 | ad 3 [27] ado$
3 |d 6 |34 |do g [60] dos
4 |0 7 [40]0$ g [70] 0$$%
0o1l$ o [00]%$$ o [00] $$5%

« Time. O(n log n)

Solution 3: Difference Cover Sampling

- DC3 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:

- Step 1. Sort sample suffixes.
- Sample all suffixes starting at positions i =1 mod 3 and i =2 mod 3.
- Recursively sort sample suffixes.

- Step 2. Sort non-sample suffixes.
- Sort the remaining suffixes (starting at positions i = 0 mod 3).

- Step 3. Merge.
- Merge sample and non-sample suffixes.

Step 1: Sort Sample Suffixes

AA|O |Q|D |T|T|0 |Q|D |T|T|10 <

Step 1: Sort Sample Suffixes

abb
ada

[
bba
/ do$

10

\l
AA|O |Q|D |T|T|0 |Q|D |T|T|10 <

Step 1: Sort Sample Suffixes

y

a
2 g abb
7 ada
51g bba
= do$
bba

b
&b dab
S | bad

11] O

$

$

Step 1: Sort Sample Suffixes

abb
ada
bba
do$
bba
dab
bad

0$$

String of length 2n/3
over alphabet of size ¢

AA|O |Q|D |T|T|0 |Q|D |T|T|10 <

Step 1: Sort Sample Suffixes

y
d
2 abb 0] o
7 ada 1|1
3 bba 3|4
= do$ 5|6
5 bba 3|3
b dab 415
a bad 212
. 0$$ 6|7
0)
$ String of length 2n/3 Replace characters
$ over alphabet of size o8 by their rank...
and suffix sort

recursively!

Step 1: Sort Sample Suffixes

AA|O |Q|D |T|T|0 |Q|D |T|T|10 <

abb
ada
bba
do$
bba
dab
bad

0$$

String of length 2n/3
over alphabet of size ¢

IV |WV|—=|O
NN ow o 2O

BN

AA|O |Q|D |T|T|20 |Q|D |T|0|19 <

Replace characters
by their rank...

and suffix sort
recursively!

Step 2: Sort Non-Sample Suffixes

N A~ o= o
ROV |T|T|V || |T|10|9 1<

~N O

¢+ ¢ 4 2

b1

a4

RO Q| |T|T|O Q|0 |T|0|0 <

Step 3: Merge

oL$

Step 3: Merge

0]$

Step 3: Merge

0] $

Step 3: Merge

0|3

Step 3: Merge

b | <@m bab

Step 3: Merge

0|3

b | <@m bab

Step 3: Merge

0|3

b | <@m bab

41y | €= yal

Step 3: Merge

> claolal© o) Ko} Nu \SZ2
~ N M O < o

@ o

> 0

] o] Heo] K] o] Ho) Ko &

< (e9) Al o
om ~— < AN

Step 3: Merge

41y | €= YO

Step 3: Merge

o|lQ|o|jc|o|c|alalc

N MO N O <

&>
o

d | <= dad

41y | €= yal

Step 3: Merge

>| @©

0

0

©

©

©

0O

0

©

©

—NOOMO N O T O
—

&>
o

d| €= d7

41y | €= YO

Step 3: Merge

o|lQ|o|jc|o|c|alalc

N MO N O <

10| d

1110

&>
o

41y | €= YO

> o|lo|lQ|o|o|c|lQlalo

&>
o

1110

10| d

AT~ N OMO N0 © <
—

Step 3: Merge

41y | €= YO

Solution 3: Difference Cover Sampling

- DC3 Algorithm. Sort suffixes in three steps:
- Step 1. Sort sample suffixes.
- Sample all suffixes starting at positionsi=1mod3andi=2mod3. O(n)

- Recursively sort sample suffixes. T(2n/3)
- Step 2. Sort non-sample suffixes.
- Sort the remaining suffixes (starting at positions i = 0 mod 3). O(n)

- Step 3. Merge.
- Merge sample and non-sample suffixes.
- T(n) = time to suffix sort a string of length n over alphabet of size n

+ Time. T(n) = T(2n/3) + O(n) = O(n)

2

En sample suffixes

...........

n suffixes

TP

/\

/
/
\

4 1 4
— —] h = —n non-sample
9 3 27

suffixes

2 1 2
— —]| h = —n non-sample suffixes
~_ 2)(3)-:
1

En non-sample suffixes

Solution 3: Difference Cover Sampling

- Theorem. We can suffix sort a string of length n over alphabet X of size n in time O(n).

- Theorem. We can suffix sort a string of length n over alphabet > O(sort(n, |Z[)) time.

Radix and Suffix Sorting

- Radix Sort
- Suffix Sort

