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Radix Sort
• Sorting small universes. Given a sequence of n integers from a universe U = {0, 1, ..., u-1}.

• How fast can we sort sequence if the size of the universe is not too big?



• Algorithm. Count 0s and 1s.

• Time. O(n).
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Radix Sort

• Algorithm. Insert into array of linked list + traverse array of linked list. 

• Time. O(n + u) = O(n)

• Sorting can be stable. 
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• Radix Sort. Sort on each digit from right to left using stable sort. 

• Time. O(n + n + n) = O(n)

Radix Sort

002
024
045
066
075
090
170
200
802
905

170
045
075
090
802
024
002
066
200
905

n = 10, U = {0, ..., n3 - 1 = 999}

170
090
200
802
002
024
045
075
905
066

200
802
002
905
024
045
066
170
075
090



Radix Sort
• Radix Sort [Hollerith 1887]. Sort sequence of n integers from U = {0, ..., nk-1}.


• Write each element in sequence as a base n integer x = (x1, x2, .., xk)

• Sort sequence according to each digit from right to left. Sorting should be stable.  


• Time. O(nk)
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Suffix Sort
• Suffix sorting. Given string S of length n over alphabet Σ, compute the sorted  lexicographic 

order of all suffixes of S.


• Theorem [Kasai et al. 2001]. Given the sorted lexicographic order of suffixes of S, we can 
construct the suffix tree for S in linear time.
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Suffix Sort
• Suffix trees and sorting. The lexicographic order of the suffixes is the same ordering as suffixes 

in the leaves of the suffix tree. 

• Suffix array. The array of the sorted order of the suffixes. 
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Suffix Sort
• Goal. Compute the lexicographic order of all suffixes of S fast.

• For simplicity assume |Σ| = O(n)

• Solution in 3 steps.


• Solution 1: Radix sorting

• Solution 2: Prefix doubling 

• Solution 3: Difference cover sampling



Solution 1: Radix Sort
• Radix Sort.


• Generate all suffixes (pad with $).

• Radix sort. 


• Time. O(n2) 
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Solution 2: Prefix Doubling
• Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4, 

8, ..., n. Each step uses radix sort on pair from previous step. 


• Time. O(n log n) 
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Solution 3: Difference Cover Sampling
• DC3 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:


• Step 1. Sort sample suffixes.

• Sample all suffixes starting at positions i = 1 mod 3 and i = 2 mod 3.

• Recursively sort sample suffixes.   


• Step 2. Sort non-sample suffixes.

• Sort the remaining suffixes (starting at positions i = 0 mod 3).


• Step 3. Merge.

• Merge sample and non-sample suffixes.



Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes

y
a
b
b
a
d
a
b
b
a
d
o
$
$

abb
ada
bba
do$

y
a
b
b
a
d
a
b
b
a
d
o
$
$

0
1
3
5
3
4
2
6

1

4

7

10



Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 2: Sort Non-Sample Suffixes
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2a4

a5

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

a6

a5 3

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ad7
ba6

3

4

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ba5

ba6

3

4

5

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ya3

ba6

3

4

5

6

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ya3

bb1

3

4

5

6

7
0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

b2

3

4

5

6

7

8

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

ya3

da4
3

4

5

6

7

8

9

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

d7

3

4

5

6

7

8

9

10

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

o0

3

4

5

6

7

8

9

10
11

0
3

1
5

4
2

6
7

4

3

2

1

0



Step 3: Merge

y
a
b
b
a
d
a
b
b
a
d
o
$

y
a
b
b
a
d
a
b
b
a
d
o
$0

1

2

y0

3

4

5

6

7

8

9

10
11

12
0
3

1
5

4
2

6
7

4

3

2

1

0



Solution 3: Difference Cover Sampling
• DC3 Algorithm. Sort suffixes in three steps:


• Step 1. Sort sample suffixes.

• Sample all suffixes starting at positions i = 1 mod 3 and i = 2 mod 3.

• Recursively sort sample suffixes.   


• Step 2. Sort non-sample suffixes.

• Sort the remaining suffixes (starting at positions i = 0 mod 3).


• Step 3. Merge.

• Merge sample and non-sample suffixes.


• T(n) = time to suffix sort a string of length n over alphabet of size n


• Time. T(n) = T(2n/3) + O(n) = O(n)
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Solution 3: Difference Cover Sampling
• Theorem. We can suffix sort a string of length n over alphabet Σ of size n in time O(n). 


• Theorem. We can suffix sort a string of length n over alphabet Σ O(sort(n, |Σ|)) time.
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