Radix and Suffix Sorting

Radix and Suffix Sorting

- Radix Sort - Radix Sort
- Suffix Sort
Philip Bille

Radix Sort Radix Sort

+ Sorting small universes. Given a sequence of n integers from a universe U = {0, 1, ..., u-1}. n=10,U={0,1}

- How fast can we sort sequence if the size of the universe is not too big? T T
0] 0]
1] 10|
1 0| 10|

0 0

G ™ o
0] KN
1] 1
1 0| 1
L1 1]

+ Algorithm. Count Os and 1s.
+ Time. O(n).

Radix Sort

n=10,U={0,1,..,n-1=9}
—0]

—1]

—2 2]

-
—[9]

+ Algorithm. Insert into array of linked list + traverse array of linked list.

+ Time. O(n + u) = O(n)
-+ Sorting can be stable.

[o[>[o]>[o]o]~]~]
\
[TTITLITLT]

o[s[~[ef]2]]e]+o]

L7]

Radix Sort
n=10,U={0, ..., n3- 1= 999}
170 170 200
045 90 802
075 200 002
090 802 905
802 > aoz > 0R4 >
024 024 045
002 0456 066
066 a7 170
200 906 075
905 066 1090

-+ Radix Sort. Sort on each digit from right to left using stable sort.
+ Time. O(n + n + n) = O(n)

002

024

045

066

075

090

170

200

802

905

Radix Sort

+ Radix Sort [Hollerith 1887]. Sort sequence of n integers from U = {0, ..., nk-1}.

- Write each element in sequence as a base n integer x = (X1, X2, .., Xk)

-+ Sort sequence according to each digit from right to left. Sorting should be stable.
+ Time. O(nk)

Radix and Suffix Sorting

- Suffix Sort

Suffix Sort

Suffix Sort

- Suffix sorting. Given string S of length n over alphabet %, compute the sorted lexicographic
order of all suffixes of S.

N

O—=- 0O POOON OWU N =N

$
abbadabbado$
abbado$
adabbado$
ado$
badabbado$
bado$
bbadabbado$
bbado$
dabbado$
do$

Suffixes in
sorted order

Rank of each
suffix

O
O 400 NNOWORO=N

[#le]e]o[o]o]>[e]+[=]]=}<]

o$
yabbadabbado$

+ Theorem [Kasai et al. 2001]. Given the sorted lexicographic order of suffixes of S, we can
construct the suffix tree for S in linear time.

- Suffix trees and sorting. The lexicographic order of the suffixes is the same ordering as suffixes
in the leaves of the suffix tree.

- Suffix array. The array of the sorted order of the suffixes.

©woOODTTUD AN TT<

Suffix Sort

Solution 1: Radix Sort

+ Goal. Compute the lexicographic order of all suffixes of S fast.
- For simplicity assume |Z| = O(n)
+ Solution in 3 steps.

+ Solution 1: Radix sorting

- Solution 2: Prefix doubling

+ Solution 3: Difference cover sampling

- Radix Sort.
- Generate all suffixes (pad with $).

- Radix sort.

yabbadabbado$
abbadabbado$
bbadabbado$
badabbado$
adabbado$
dabbado$
abbado$
bbado$

bado$

ado$

do$

o$

$

+ Time. O(n2)

Solution 2: Prefix Doubling

- Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4,
8, ..., n. Each step uses radix sort on pair from previous step.

[#lo[e]>]e]o]=]e]x]o]o]~ <]

ORWLNON= W—=NN 2O

+ Time. O(n log n)

oONONWRrR2ONWA-—-®©
(=] FX (4] ER DS LIRS (4] BRI e
(=] [=] PN [V B LVI D] B [B V]

e

ya
ab
bb
ba
ad
da
ab
bb
ba
ad
do
o$
$$

1

QWO WUo—=- NN~ -=O

-
[9+]

OIN| DN W B =N WO
(=] [=] [a] EN] [e)] 1\V] [év] BN Bl ()])]

yabb
abba
bbad
bada
adab
dabb
abba
bbad
bado
ado$
do$$
03$$
$3$$

Solution 3: Difference Cover Sampling

- DC8 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:

- Step 1. Sort sample suffixes.
- Sample all suffixes starting at positions i =1 mod 3 and i =2 mod 3.
+ Recursively sort sample suffixes.

- Step 2. Sort non-sample suffixes.
- Sort the remaining suffixes (starting at positions i = 0 mod 3).

- Step 3. Merge.
- Merge sample and non-sample suffixes.

Step 1: Sort Sample Suffixes

[elerlo[ofe [o]o]e[o]s [ofo] <]

Step 1: Sort Sample Suffixes

LY |
1 la | ~““““““‘\\\§§§\\§
2 abb
sl ——— ada
T bba
z / do$
7[B]
b |
1 a |
10| d |
1 O |
El
El

Step 1: Sort Sample Suffixes

[v]
1 a|
2lb
= abb
% ada
— bba
5 % do$
? bba
8 T dab
] — —————— [bad
E / 0$$
11| 0 |
15|
[$]

Step 1: Sort Sample Suffixes

abb
ada
bba
do$
bba
dab
bad
03$

String of length 2n/3
over alphabet of size g3

[elerlo[ofe [o]o]e]a]x [ofo] <]

Step 1: Sort Sample Suffixes

abb
ada
bba
do$
bba
dab
bad
03%$

String of length 2n/3
over alphabet of size o3

FEEFEFERERFERR]

[o]o]]e]ofe]+]o]
NN oW o s~ =0

Replace characters
by their rank...

and suffix sort
recursively!

Step 1: Sort Sample Suffixes

LY |

1 a

2 abb
2] ada
E bba
L a

0 |

10 |

1 a

d |

do$
bba
dab
bad
03%$

String of length 2n/3
over alphabet of size g3

JIAN

[eler]o[o]e [o]o]e[e]e[o]o]> <]

[o]ro]~[e]en]eo] -]
NN oW o =2 O

Replace characters
by their rank...

and suffix sort
recursively!

Step 3: Merge

[Hslalo[sfe]s[ala[s[o]o]w]
o

[H{=[o]o]<]o[s]alo[s[o]ofw]
< (s ~ o o

o o™ ~ <+ o © ™~

[=lalo[sfe]s[alo[s[o[o]x]
~ N o

A

[Hslofels[els|olo]s]o]ol]
=

o M ~ <+ o © ~

Step 2: Sort Non-Sample Suffixes

[Hslelo[sfe]s[ala[s|e]o)w]
< <} — [aV) o

1 <
©

P
EE _b_b_ [o]slale]w[o]ole]

— 0 <+ N O ~

(O]
(@)
P
O]
=
™
Q.
O
o
n
EEBEEEEEEEEED
— o
2 3
EERREOEEEEEED
< (e} ~— N o
o m - < O~
0]
(@]
_
[0)
=
%)
Q.
O
o
n

Step 3: Merge

[H=lalo[sle]s[ala[s[o]o]e]
Al (30 8] < o

ba6
ad7

\A/

[H{=[o]o]<]o[s]alo[s[o]ofw]
< (s ~ o o

o o™ ~ <+ o © ™~

[=lalo[ste]s[alo[s[o[o]w]
Al n ™ o © < o

4ly | €= yad
<= bab

_a_b_b_a_d_a_b_b_a_d_o_$_
@ ~— (a\) o
o M ~ <+ o © ~

Step 3: Merge

[Hslofo]s[o]s]o]o[so[o]w]
— ™ 3] o

[To} ©
© ©

\4 \4

[Hslalo[sfe]s[ala[s|e]o]w]
< @ ~ o o
o m — <+ © ~

0]
(@)
et
[0}
=
)
Q
O
et
)]
[xs]o]o[s]o[s]o]a[s]o]ole]
- Lo o = =)
re) ©
8 8
[xs]o]o[s]o[s|ala[s]o]ole]
<) — ~ =)
om 1 YN ©~
)
(@)
=
(0]
=
™
o
O
et
n

Step 3: Merge

[=lalo[sfe]s[alo[sfo]o]w]
—N~Nwonom AN © < o

o N
y .D

[H{=[o]o]<]o[s]alo[s[o]ofw]
< (s ~ o o

o o™ ~ <+ o © ™~

[=lalo[sfe]s[alo[s[o[o]x]
—NOMO N O T O o
2

N~
©

0
y
[xs[olo]<]o[s]a}o[s[c]ofw]
< @ ~— (a\) o

o M ~ <+ o © ~

Step 3: Merge

[Hslelo[sle]s|alo[s[e]o)n]
— N N © < o

1
Q
Qo

slofa]s[o[slala]<]o]ofw]

@ ~ o o
o ™ — <+ © ~

4]y | <= yad

0]
(@)
P
[0}
=
%)
Q
O
3
9p]
EDEEEEEREEEED
N MO N0 O < o
i3
EpEEOCEREEEEE
< (e} ~— N o
o ™ — < O N~
)
(@)
P
(0]
=
Q)
o
O
3
n

Step 3: Merge Step 3: Merge
4fy] €= v [v] 4[y] €= vo 12[y]
0 [a] 1[a] 0 [a] 1[a]
3 [b] 7[b] 3 |b] 7(b |
3[b | 5[0 | 3[b | 5(b |
1 [a] 3|a] 1 [a] 3[a]
5 [d] o[d] 5 [d] o[d]
1[a] 2|a] 1[a] 2[a]
4 [b] 8[b 4 [o] 8[b]
2 |b] 6[b | 2 [b] 6(b]
2[a] 4[a] 2[a] 4[a]
6 [d] 10| d | 6 [d] 10[d |
7 |o] €= o0 1[0 | 7 [o] 1[0 |
0[$ | EX of$ | o[$ |
Solution 3: Difference Cover Sampling 2\° 8 _
2 2 4) 5 n= En sample suffixes
- DC3 Algorithm. Sort suffixes in three steps:) <§> n = gn sample suffixes
- Step 1. Sort sample suffixes. 3" sample suffixes -
- Sample all suffixes starting at positionsi=1mod 3andi=2mod3. O(n) " —
n IxXes
+ Recursively sort sample suffixes. T(2n/3) Su_ ° / B

- Step 2. Sort non-sample suffixes. /
- Sort the remaining suffixes (starting at positions i = 0 mod 3). O(n)
- Step 3. Merge. / o
+ Merge sample and non-sample suffixes. On) n <i> (l) e onsamole
+ T(n) = time to suffix sort a string of length n over alphabet of size n \ Sugixes 3) 27 P

. Time. T(n) = T(2n/3) + O(n) = O(n) \ = <§> (%) "= %n non-sample suffxes

En non-sample suffixes

Solution 3: Difference Cover Sampling

+ Theorem. We can suffix sort a string of length n over alphabet X of size n in time O(n).

- Theorem. We can suffix sort a string of length n over alphabet = O(sort(n, |Z|)) time. Radix and SUﬂ:iX Sortlng

- Radix Sort
- Suffix Sort

