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Radix Sort Radix Sort

+ Sorting small universes. Given a sequence of n integers from a universe U = {0, 1, ..., u-1}. n=10,U={0,1}

- How fast can we sort sequence if the size of the universe is not too big? T T
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+ Algorithm. Count Os and 1s.
+ Time. O(n).




Radix Sort

n=10,U={0,1,..,n-1=9}
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+ Algorithm. Insert into array of linked list + traverse array of linked list.

+ Time. O(n + u) = O(n)
-+ Sorting can be stable.
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Radix Sort
n=10,U={0, ..., n3- 1= 999}
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-+ Radix Sort. Sort on each digit from right to left using stable sort.
+ Time. O(n + n + n) = O(n)

002

024

045

066

075

090

170

200

802

905

Radix Sort

+ Radix Sort [Hollerith 1887]. Sort sequence of n integers from U = {0, ..., nk-1}.

- Write each element in sequence as a base n integer x = (X1, X2, .., Xk)

-+ Sort sequence according to each digit from right to left. Sorting should be stable.
+ Time. O(nk)

Radix and Suffix Sorting

- Suffix Sort




Suffix Sort

Suffix Sort

- Suffix sorting. Given string S of length n over alphabet %, compute the sorted lexicographic
order of all suffixes of S.
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+ Theorem [Kasai et al. 2001]. Given the sorted lexicographic order of suffixes of S, we can
construct the suffix tree for S in linear time.

- Suffix trees and sorting. The lexicographic order of the suffixes is the same ordering as suffixes
in the leaves of the suffix tree.

- Suffix array. The array of the sorted order of the suffixes.
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Suffix Sort

Solution 1: Radix Sort

+ Goal. Compute the lexicographic order of all suffixes of S fast.
- For simplicity assume |Z| = O(n)
+ Solution in 3 steps.

+ Solution 1: Radix sorting

- Solution 2: Prefix doubling

+ Solution 3: Difference cover sampling

- Radix Sort.
- Generate all suffixes (pad with $).

- Radix sort.
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+ Time. O(n2)




Solution 2: Prefix Doubling

- Prefix doubling [Manber and Myers 1990]. Sort substrings (padded with $) of lengths 1, 2, 4,
8, ..., n. Each step uses radix sort on pair from previous step.
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+ Time. O(n log n)
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Solution 3: Difference Cover Sampling

- DC8 Algorithm [Karkkainen et al. 2003]. Sort suffixes in three steps:

- Step 1. Sort sample suffixes.
- Sample all suffixes starting at positions i =1 mod 3 and i =2 mod 3.
+ Recursively sort sample suffixes.

- Step 2. Sort non-sample suffixes.
- Sort the remaining suffixes (starting at positions i = 0 mod 3).

- Step 3. Merge.
- Merge sample and non-sample suffixes.

Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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Step 1: Sort Sample Suffixes
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String of length 2n/3
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Step 1: Sort Sample Suffixes
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Replace characters
by their rank...

and suffix sort
recursively!

Step 1: Sort Sample Suffixes
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Step 3: Merge
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Step 2: Sort Non-Sample Suffixes
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge
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Step 3: Merge Step 3: Merge
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Solution 3: Difference Cover Sampling 2\° 8 _
2 2 4 ) 5 n= En sample suffixes
- DC3 Algorithm. Sort suffixes in three steps: ) <§> n = gn sample suffixes
- Step 1. Sort sample suffixes. 3" sample suffixes -
- Sample all suffixes starting at positionsi=1mod 3andi=2mod3. O(n) " —
n IxXes
+ Recursively sort sample suffixes. T(2n/3) Su_ ° / B

- Step 2. Sort non-sample suffixes. /
- Sort the remaining suffixes (starting at positions i = 0 mod 3). O(n)
- Step 3. Merge. / o
+ Merge sample and non-sample suffixes. On) n <i> (l) e onsamole
+ T(n) = time to suffix sort a string of length n over alphabet of size n \ Sugixes 3) 27 P

. Time. T(n) = T(2n/3) + O(n) = O(n) \ = <§> (%) "= %n non-sample suffxes

En non-sample suffixes




Solution 3: Difference Cover Sampling

+ Theorem. We can suffix sort a string of length n over alphabet X of size n in time O(n).

- Theorem. We can suffix sort a string of length n over alphabet = O(sort(n, |Z|)) time. Radix and SUﬂ:iX Sortlng

- Radix Sort
- Suffix Sort




