
Weekplan: External Memory III

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] Cache-Oblivious Algorithms and Data Structures, Erik Demaine, Lecture Notes from the EEF Summer School
on Massive Data Sets, 2002

[2] Cache-Oblivious Algorithms, M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran, FOCS 1999

We recommend reading [1] in detail. [2] is the paper introducing the cache-oblivious model.

1 [w] Double Array Traversal Consider arrays A = [1, 2, 3, 4, 5, 6, 7, 8] and B = [9, 10, 11, 12, 13, 14, 15, 16]
and function f (A[i], B[ j]) = A[i]+B[ j]). Draw the tree of recursive subproblems in the cache-oblivious algorithm
for double array traversal.

2 String Reversal Let S be a string of length N stored in O(N/B) blocks. We want to compute the reverse string
SR of S. Solve the following exercises.

2.1 Give an efficient algorithm to reverse S in the I/O model.

2.2 Give an efficient algorithm to reverse S in the cache-oblivious model.

3 Stacks and Queues Show how to efficiently implement stacks and queues in the cache-oblivious model. Can
you match the cache-conscious I/O bounds?

4 Cache-Oblivious Analysis Solve the following exercises.

4.1 Analyse binary search in the cache-oblivious model. What is the dependency on B?

4.2 Analyse mergesort in the cache-oblivious model.

5 [w] van Emde Boas Layout Consider a complete binary tree T of height 3 with 15 nodes. Solve the following
exercises.

5.1 Draw T and number each node with it positions in the vEB layout.

5.2 Draw two new copies of T and number the nodes according to the heap layout (layout used in binary heaps)
and the inorder layout (ordering corresponding to the inorder traversal of T). Compare these with the vEB
layout.

6 van Emde Boas Ordering The vEB layout orders the recursive layout of the bottom trees from left-to-right.
Suppose we reverse this ordering. How does this change the performance of the layout?

1



7 Cache-Oblivious Lookahead Array Consider the following dynamic search data structure called the cache-
oblivious lookahead array (COLA). It consists of ⌈log2 N⌉ arrays each of which is either completely full or completely
empty. The kth array is of length 2k and contains items iff kth least significant bit of N is 1. Each of the full arrays
stores items in sorted order. Solve the following exercises.

7.1 [w] Draw a small example of a COLA contains 9 items.

7.2 Show how to search a COLA in O(log2 N) I/Os.

7.3 Show how to insert elements into a COLA in O(log N)/B amortized I/Os. Hint: think binary addition and
merging.

7.4 [∗] Show how to search a COLA in O(log N) I/Os. Hint: fractional cascading.

8 Dynamic Programming Let S and T be strings of length N and consider the classic O(N2) time solution for
computing the longest common subsequence of S and T . Show how to implement the algorithm efficiently in the
cache-oblivious model (if you have not done the earlier exercise on dynamic programming in the I/O model, do
so before this exercise).

2


