Streaming 1: Estimating the number of elements

Philip Bille Inge Li Gørtz Eva Rotenberg

Philip Bille, Inge Li Gørtz, Eva Rotenberg Streaming 1: Estimating the number of elements

Previous courses: RAM-model.

Not everything fits in RAM \Rightarrow the RAM model is not always a suitable model.

In this course: Other models.

- Streaming,
- I/O,
- Approximate data structures,
- Parallel computation.

Four subjects, four mandatory assignments, one oral exam. To pass: assignments + exam, overall assessment.

Prerequisites: algorithmic and mathematical maturity.

The streaming model

Stream, σ : a_1, a_2, a_3, \ldots of elements $a_i \in U$ from some universe. Maintain a small *working memory*. When seeing element a_i , update the memory depending only on a_i . Goal: by the end of the stream, have completed some task.

Majority

Majority: Is there a colour that more than half of the boxes have? Naive: Count all colours. Space: n counters of size $\leq \log n$. Idea: Allow one-sided error. If a majority exists, output the majority. Otherwise, output whatever. Advantage: A second pass can determine whether that one candidate has a true majority. How many counters? (Try: one counter, and one other variable.)

Frequent elements

 $\begin{array}{l} \text{if } j \in keys(A) \text{ then} \\ \mid A[j]++; \\ \text{else if } |keys(A)| < k-1 \\ \text{then} \\ \mid A[j] \rightarrow 1; \\ \text{else} \\ \mid \text{ decrement all } A[j]. \end{array}$

Task: Detect very common colours. E.g: Is there some colour that > 5% of the boxes have? (i.e. n/k = n/20 boxes) Naive: count all occurrences of the $\le n$ colours. Misra-Gries: Keep track of the k - 1 = 19 most common colours. Space-consumption: k - 1 counters of size $\le \lg n$

Exercise: 4-6 (weekplan) and 1-1, 1-2 (notes)

Counting – in limited space!

Counting

Imagine you want to count the elements. Space of exact count: $\log n$ bits memory needed. Approx count: $\log \log n$ bits. Challenge: when to update?

Morris' original idea:

Keep an approximate count: store c such that $2^c \simeq n$ Update randomly with decreasing probability. Maintain 2^c is n in expectation.

Question: With which probability?

When c turns c_0 , $n \simeq 2^{c_0}$, so it should stay there for circa 2^{c_0} turns. \Rightarrow probability circa $1/2^{c_0}$. (Exercise: smart way of rolling a 2^m -sided dice?)