Streaming: Sketching

Inge Li Gørtz

Sketching

Today

- Sketching
- CountMin sketch

Sketching

- Sketching. create compact sketch/summary of data.
- Example. Durand and Flajolet 2003.
 - Condensed the whole Shakespeares' work

ghfffghfghgghgggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhhigi gighfgihfffghigi hghigfhhgeegeghgghhhgghhfhidiigi high hehhfgg hfgighigffghdieghhhggghhf gihfffghghi hifgggffi hgihfggighgi i i fjgfgjhhjiifhjgehgghfhhfhj higggghghi higghhi higgi gfgj jjmfl

- Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative error of 9.4%).
- · Composable.
 - Data streams S_1 and S_2 with sketches $sk(S_1)$ and $sk(S_2)$
 - There exists an efficiently computable function f such that

 $sk(S_1 \cup S_2) = f(sk(S_1), sk(S_2))$

Hashing

• Pariwise independent hash function. Let $h : [n] \to [m]$. For any $x_1, x_2 \in [n]$ and $y_1, y_2 \in [m]$ we have

 $\Pr[h(x_1) = y_1, h(x_2) = y_2] = \Pr[h(x_1) = y_1] \cdot \Pr[h(x_2) = y_2]$

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.
- · Estimate frequency of y: return minimum of all entries y hash to.

CountMin Sketch

- · Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.
- Estimate frequency of y: return minimum of all entries y hash to.

Applications of CountMin Sketch

- We can use the CountMin Sketch to solve e.g.:
 - · Heavy hitters: List all heavy hitters (elements with frequency at least m/k).
 - Range(a,b): Return (an estimate of) the number of elements in the stream with value between a and b.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.

Dyadic Intervals

• Dyadic intervals. Set of intervals: $\{[j\frac{n}{2^i}+1,\ldots,(j+1)\frac{n}{2^i}]\mid 0\leq i\leq \lg n,\,0\leq j\leq 2^{i-1}\}$

Heavy Hitters

- · Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.

Heavy Hitters

- · Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - · On a level: Treat all elements in same interval as the same element.
- · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency $\geq m/k$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:

Count Sketch

Algorithm 2: CountSketch

if Insert(x) then

end

end

else if Frequency(i) then $\hat{f}_{ij} = C(h_j(i)) \cdot s_j(i)$

Count-Min

Count-Sketch

Initialize d independent hash functions $h_j : [n] \to [w]$.

Set counter C[j, b] = 0 for all $j \in [n]$ and $b \in [w]$

while Stream S not empty do for $j = 1 \dots d$ do

 $| \quad \tilde{C}[j, h_j(x)] = + s_j(i)$

return $\widetilde{f}_{ij} = \text{median}_{j \in [d]} \widehat{f}_{ij}$

Initialize d independent hash functions $s_j : [n] \to \{\pm 1\}$.

Space

 $O\left(\frac{1}{-}\log n\right)$

 $\frac{1}{\epsilon^2}\log n$

0

- · traverse tree from root.
- only visit children with frequency $\geq m/k$.

Error

 ϵF_1 (one-sided)

 $\epsilon \sqrt{F_2}$ (two-sided)

Heavy Hitters

- · Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.
- · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency $\geq m/k$.
- Analysis.
 - Time.
 - Number of intervals queried: $O(k \lg n)$.
 - Query time: $O(k \lg n \cdot \lg(1/\delta))$
 - Space.

