Distributed Algorithms

Congest Model

Congest Model

+ Network with n computers (nodes) connected via communication channels (edges).

« Identifiers. Nodes has a unique identifier id: V — {1,2,..., n¢} for some constant c.
+ Messages. Nodes can exchange messages with neighbors.

+ Communication rounds. All nodes perform the same algorithm synchronously in
parallel:

+ Receive messages
* Process
+ Send
+ Message size. In each round over each edge send message of size O(logn) bits.

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

N Ny Ny A

O
N

O

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—O0—0— 0@ — 06 —0O0—0—0C—0

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.

(D—@—(O)—0—C—E—0—E—wWw—0O

+ P3C algorithm.
« c=id.
+ Repeat forever:
+ Send message c to all neighbors.
- Receive messages M from neighbors.
. Ifc # {1,2,3} and ¢ > all messages received in this round:
- ¢ « min({1,2,3}\M})

Path colouring

» Path coloring. No neighbouring nodes have the same color.

e—0—CO0—0—0@—0—OCO—0—0—=0

« 3-coloring. Color path with 3 colors {1,2,3}.

» Impossible without identifiers.

—@—(O—0—(0—E—"=@——C—"~0—0

+ P3C algorithm.
« c=id.
» Repeat forever:
» Send message c to all neighbors.
- Receive messages M from neighbors.
« Ifc # {1,2,3} and ¢ > all messages received in this round:
« ¢ < min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—0O0—0— 06— 06— 0O0—=@—o

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.
—@—(O—(0———@——«¢

+ P3C algorithm.
+ c=id.
+ Repeat forever:
+ Send message c to all neighbors.
- Receive messages M from neighbors.
. If ¢ # {1,2,3} and ¢ > all messages received in this round:
- ¢ « min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—O0—0— 00— O0—0—0—=0

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.
12 1 (D)—(5—(0—€3 1 8 1 7

+ P3C algorithm.
« c=id.
* Repeat forever:
» Send message c to all neighbors.
+ Receive messages M from neighbors.
« Ifc # {1,2,3} and ¢ > all messages received in this round:
« ¢ < min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—O0—0— 0@ 0 0O0—=08 =

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.
2 1 (H—(15—C0—@ 1 2 1

+ P3C algorithm.
« c=id.
+ Repeat forever:
+ Send message c to all neighbors.
- Receive messages M from neighbors.
. Ifc # {1,2,3} and ¢ > all messages received in this round:
- ¢ « min({1,2,3}\M})

Path colouring

» Path coloring. No neighbouring nodes have the same color.

—0—O0—0—0—0—0O0—0—-o

« 3-coloring. Color path with 3 colors {1,2,3}.

» Impossible without identifiers.
B 1 O)—1— 2 1 2 1

+ P3C algorithm.
« c=id.
» Repeat forever:
» Send message c to all neighbors.
- Receive messages M from neighbors.
« Ifc # {1,2,3} and ¢ > all messages received in this round:
« ¢ < min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—0O0—0— 06— 06— 0O0—=@—o

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.
2 1 (H)—5) 1 2 1 2 1

+ P3C algorithm.
+ c=id.
+ Repeat forever:
+ Send message c to all neighbors.
- Receive messages M from neighbors.
. If ¢ # {1,2,3} and ¢ > all messages received in this round:
- ¢ « min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—O0—"0— 00— O0—=@ o

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.
2 1 O 15 1 2 1 2 1

+ P3C algorithm.
« c=id.
* Repeat forever:
» Send message c to all neighbors.
+ Receive messages M from neighbors.
« Ifc # {1,2,3} and ¢ > all messages received in this round:
« ¢ < min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—O0—0— 0@ 0 0O0—=08 =

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.

+ P3C algorithm.
« c=id.
+ Repeat forever:
+ Send message c to all neighbors.
- Receive messages M from neighbors.
. Ifc # {1,2,3} and ¢ > all messages received in this round:
- ¢ « min({1,2,3}\M})

Path colouring

» Path coloring. No neighbouring nodes have the same color.

e—0—CO0—0—0@—0—OCO—0—0—=0

« 3-coloring. Color path with 3 colors {1,2,3}.

» Impossible without identifiers.

00 060 00000

+ P3C algorithm.
« c=id.
» Repeat forever:
» Send message c to all neighbors.
- Receive messages M from neighbors.
« Ifc # {1,2,3} and ¢ > all messages received in this round:
« ¢ < min({1,2,3}\M})

Path colouring

+ Path coloring. No neighbouring nodes have the same color.

—0—0O0—0—0@—0—O0—0—0—0

« 3-coloring. Color path with 3 colors {1,2,3}.

+ Impossible without identifiers.

o0 0060000600

+ P3C algorithm.
+ c=id.
+ Repeat forever:
+ Send message c to all neighbors.
- Receive messages M from neighbors.
. If ¢ # {1,2,3} and ¢ > all messages received in this round:
- ¢ « min({1,2,3}\M})

All-Pairs Shortest Paths

+ All-Pairs Shortest Paths. The local output of a node is the identities of all other
nodes and the distance to them.

+ Algorithm.
+ BFS tree from a specific node (leader)
+ Use BFS tree without a leader
+ Pipeline BFS computations.

BFS

+ BFS. Local output from each node is the distance to the leader s.
+ Algorithm.
* Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.
+ Round i: Each node that is not stopped
- if it receives “wave” from some port(s)
+ switch to state i.
+ send message “wave” to all neighbors and stop.

BFS

» BFS. Local output from each node is the distance to the leader s.
+ Algorithm.

» Round 0O: leader sends “wave” to all neighbors, switch to state 0 and stops.

» Round i: Each node that is not stopped
- if it receives “wave” from some port(s)
- switch to state i.

» send message “wave” to all neighbors and stop.

BFS

+ BFS. Local output from each node is the distance to the leader s.
+ Algorithm.
* Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.
+ Round i: Each node that is not stopped
- if it receives “wave” from some port(s)
+ switch to state i.

+ send message “wave” to all neighbors and stop.

BFS

« BFS. Local output from each node is the distance to the leader s.

+ Algorithm.

» Round 0O: leader sends “wave” to all neighbors, switch to state 0 and stops.

+ Round i: Each node that is not stopped
- if it receives “wave” from some port(s)
« switch to state i.

» send message “wave” to all neighbors and stop.

BFS

« BFS. Local output from each node is the distance to the leader s.
+ Algorithm.
* Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.
+ Round i: Each node that is not stopped
- if it receives “wave” from some port(s)
+ switch to state i.
+ send message “wave” to all neighbors and stop.
+ Additional information: parent and children in BFS tree?

1

BFS

» BFS. Local output from each node is the distance to the leader s.
+ Algorithm.
» Round 0O: leader sends “wave” to all neighbors, switch to state 0 and stops.
» Round i: Each node that is not stopped
- if it receives “wave” from some port(s)
+ switch to state i.
» send message “wave” to all neighbors and stop.
+ Additional information: parent and children in BFS tree.

» When receiving “wave” request, choose one to accept and send accept back.

2

Wave

Computation

Send

Round 1

s:0?->A B

Wave

Computation Send

Round 1 s:0?7->A B

Wave

Computation

Send

Round 1

s:0?7->A B

Round 2

A: accept -> s,
A:1? ->C,
A:1?->D

B: accept -> s
B:1?->D

Wave

Computation Send
Round 1 s:0?7->A B
A: accept -> s,
dA) =1,pA) =s A:1? ->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1,p) = B: 17 > D
Wave
Computation Send
Round 1 s:0?7->A B
A: accept -> s,
dA) =1,pA) =s A:1? ->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1,pB)=s B:17->D
Cls)={A B}
d0)=2,p0)=A | 30PL>A
Round 3 -
D: accept -> A
dD)=2,pD)=A D:2?->C
D:2?->B

Wave
Computation Send
Round 1 s:0?->A B
A: accept -> s,
dA)=1,pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1pB)=s B:1?->D
Wave
Computation Send
Round 1 s:0?->A B
A: accept -> s,
dA) =1,pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1p()=s B:1?->D
Cls)=1{A. B}
A0 =2,p0)=A | 50PL>A
Round 3 ks
D: accept -> A
dD)=2,pO) =A D:2?->C
D:2?->B

Wave

Computation Send
Round 1 s:0?7->A B
A: accept -> s,
dA) =1,pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1.pB) =5 B: 17 ->D
Cls)={A B}
40-200-4 |G
Round 3 sef
D: accept -> A
dD)=2,pD)=A D:2?->C
D:2?7->B
Wave
Computation Send
Round 1 s:0?7->A B
A: accept -> s,
dA) =1,pA) =s A:1? ->C,
Round 2 A:1?->D
— _ B: accept -> s
dB)=1.pB)=s B: 17 > D
Cls)={A B}
d(C) =2, p(C) = A g ggciptD >A
Round 3 cef
d=1 D: accept > A
c-9 dD)=2.p0)=A |D:22C
= D:2?7->B
a=1
C(A) ={C,D
Round 4 ® = G0}
CB) ={ aB=1 B:ack -> s

Wave
Computation Send
Round 1 s:0?->A B
A: accept -> s,
dA) =1, pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
oE)=1.pE) =5 B:17->D
Cls)=1{A, B}
A0 =2,p0)=A | 350PL>A
Round 3 i
D: accept -> A
dD)=2,pD) =A D:2?->C
D:2?->B
C(A) ={C,D
Round 4 A =Dl
CB ={aB =1 B:ack ->s
Wave
Computation Send
Round 1 s:0?->A B
A: accept -> s,
d(A) =1, pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1p()=s B:1?->D
Cls) = {A, B}
d(C) =2, p(C) =A g aocept> A
Round 3 (et
D: accept -> A
dD)=2,pO) =A D:2?->C
D:2?->B
C(A) ={C,D
Round 4 A =(CDl
CB) ={aB) =1 B:ack ->s
CO=1{ aC)=1 C:ack > A
Round 5
CD)={} aD) =1 D: ack -> A

Wave

Computation Send
Round 1 s:0?7->A B
: accept -> s,
dA) =1,p(A) =s 11?7 ->C,
Round 2 :1?->D
_ _ : accept -> s
dB)=1.pB)=s 11?2 ->D
Cls)={A B}
d= a0 =2,p0)=A | 30PL>A
C={ Round 3 : 21
d=1 a=1 D: accept -> A
c- dD)=2,pD)=A |D:22->C
- D:2?7->B
a=1
C(A) ={C,D
Round 4 ® = (0.1
CB) ={ aB =1 B:ack ->s
CC)={,aC)=1 C:ack -> A
— (C) ={}, a0 >
CD={ ab)=1 D: ack -> A
Wave
Computation Send
Round 1 s:0?7->A B
A: accept -> s,
dA) =1, pA) =s A:1? >C,
Round 2 A:1?->D
— _ B: accept -> s
dB=1pB =5 Jg17>D
C(s) = {A, B}
d= d0)=2,p0)=A | 30PL>A
C={ Round 3 2
d=1 a=1 D: accept > A
c- dD)=2,pD)=A |D:22->C
- D:2?7->B
a=1
C(A) ={C,D
Round 4 ® = (0.0l
CB) ={ aB=1 rack ->s
CC)={,aC)=1 rack -> A
- (C) ={}, a0 >
CD)={},aD)=1 ack -> A
Round 7 | a(A) = 1 cack -> s

Wave
Computation Send
Round 1 s:0?->A B
A: accept -> s,
dA) =1, pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1.pB) =3 B:172->D
Cls)=1{A, B}
A0 =2,p0)=A | 350PL>A
Round 3 il
d=1 D: accept -> A
C={ dD)=2,p(D)=A D:27->C
a; 1 D:2?->B
C(A) ={C,D
Round 4 A =Dl
CB ={aB =1 B:ack ->s
CO=1{ aC)=1 C:ack > A
Round 5
CO =, ab) =1 D: ack -> A
Round 7 | a(A) =1 A:ack ->s
Wave
Computation Send
Round 1 s:0?->A B
A: accept -> s,
d(A) =1, pA) =s A:1?->C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1.pB) =3 B:172->D
Cls)=1{A. B}
A0 =2,p0)=A | 50PL>A
Round 3 il
D: accept -> A
dD)=2,pO) =A D:2?->C
D:2?->B
C(A) ={C,D
Round 4 A =(CDl
CB)={},aB)=1 B:ack ->s
CO=1{ aC)=1 C:ack > A
Round 5
CD)={} aD) =1 D: ack -> A
Round 7 | a(A) =1 A:ack -> s

Round 8

Wave

d=
C=
a=

Computation Send
Round 1 s:0?7->A B
A: accept -> s,
dA) =1,pA) =s A:1? > C,
Round 2 A:1?->D
_ _ B: accept -> s
dB)=1.pB) =5 B: 17 > D
Cls)={A B}
a0 =2,p0)=A | 30PL>A
Round 3 st
D: accept -> A
dD)=2,pD)=A D:2?->C
D:2?7->B
C(A) ={C,D
Round 4 ® = (0.1
CB) ={ aB =1 B:ack ->s
CC)={,aC)=1 C:ack -> A
— (C) ={}, a0
CD={ ab)=1 D: ack -> A
Round 7 | a(A) =1 A:ack ->s
Round 8 | a(s) =1

Electing a Leader

+ Use BFS!?
* Algorithm.
* Run Wave(v) from every node.
+ Augment messages with identity of root node.
» A node only sends messages related smallest id seen so far.

+ When a node has received acknowledgment from all its children it sends a
message (using the BFS tree) to all other nodes that it is the leader.

(3?,7)
ol
(3?,10) (accept, 10) I::> 42,7

(accept, 7)

Electing a Leader

Electing a Leader

« Correctness.

+ Exactly one node will receive acknowledgment from all its children in its BFS tree
(namely s = min V).

* Number of rounds.
+ O(diam(G))
+ CONGEST model.
+ Every node sends only messages related to one BFS process in each round.

APSP

+ Local output. Every node knows the identity of all other nodes and the distance to
them.

* Run Wave(v) from all nodes:
+ In parallel? Messages too large!
+ Sequentially? O(n diam(G)) rounds
+ Token Walk.
+ Move a token in the BFS tree T of the leader.
» Spend 2 rounds in each node before continuing.

- First time we meet a node v in the walk start Wave(v).

APSP

+ Token Walk.
+ Move a token in the BFS tree T of the leader.
+ Spend 2 rounds in each node before continuing.

« First time we meet a node v in the walk start Wave(v).

APSP

+ Local output. Every node nodes the identity of all other nodes and the distance to
them.

+ Token Walk.
+ Move a token in the BFS tree T of the leader.
» Spend 2 rounds in each node before continuing.
- First time we meet a node v in the walk start Wave(v).
+ Claim. Two waves Wave(u) and Wave(v) never collides.
+ Assume Wave(u) starts before Wave(v).
e d=dg(u,v)
- T, is a subgraph of G.
- It takes at least 2d rounds to move the token from u to v.
- It takes d rounds for Wave(u) to reach v.

» When Wave(v) is started Wave(u) has already passed.

- Wave(v) never catches up with Wave(i) (move at same speed).

APSP

Local output. Every node nodes the identity of all other nodes and the distance to
them.

+ Token Walk.

- Move a token in the BFS tree T of the leader.

+ Spend 2 rounds in each node before continuing.

- First time we meet a node v in the walk start Wave(v).
* Rounds.

+ After O(n) rounds all Waves have been started.

* Number of rounds: O(n + diam(G)) = O(n).

