Distributed Data Structures

- Labeling Schemes
- Nearest Common Ancestor

Philip Bille

Distributed Data Structures

- Labeling Schemes
- Nearest Common Ancestor

- Labeling scheme.
 - Input. Graph G and query q(.,.) on pairs of nodes.
 - Preprocess. Assign a label to each node v.
 - Query. Given only label(v) and label(w) compute q(v,w).
- · Goals.
 - Minimize maximum length of labels.
 - Fast queries.

- Parent labeling scheme.
 - Rooted tree with n nodes.
 - Parent queries. Is v a parent of w?
- How can we solve this?

- Parent labeling scheme.
 - Assign unique ID to each node.
 - $label(v) = ID(v) \cdot ID(parent(v))$
 - v is parent w iff ID(v) = ID(parent(w)).
- Analysis.
 - 2[log n] bit labels.

- Applications.
 - Compact distributed data structures.
 - Network routing, graph representation, search engines, etc.
 - Graph theory.
 - Universal graphs, compression.
 - I/O complexity.
 - Minimal memory access.

Distributed Data Structures

- Labeling Schemes
- Nearest Common Ancestor

- Nearest common ancestors.
 - The ancestors of v is the set of nodes from v to the root.
 - The common ancestors of v and w are the ancestor of both v and w.
 - The nearest common ancestor of v and w, nca(v, w), is the common ancestor of greatest depth.
- Nearest common ancestor problem. Preprocess a rooted tree T to support
 - nca(v,w): return the nearest common ancestor of v and w.

- Applications.
 - Weighted matching
 - Minimum spanning trees
 - Dominator trees
 - Approximate string matching
 - Dynamic planarity testing
 - Network routing
 -

- Goal.
 - Labeling scheme for nearest common ancestor queries with O(log n) bits labels.
 - Query must output label(nca(v,w)).
- Solution in 3 steps.
 - ID encoding.
 - Heavy path decomposition.
 - Alphabetic codes.

- ID encoding.
 - Assign unique ID to each node.
- How can we use these for an nca labeling scheme?

- ID encoding.
 - Assign unique ID to each node.
 - $Iabel(v) = ID(v_1) \cdot ID(v_2) \cdots ID(v_k)$, where $v_1, ..., v_k$ is the path from the root to $v = v_k$.
- Queries.
 - Compute the longest prefix of IDs.
- Analysis.
 - h[log n] = O(n log n) bit labels.

Labeling scheme	label length	query time
ID encoding	O(n log n)	

- Size. The size of a node v is number of descendants of v.
- Heavy and light nodes.
 - Root is light.
 - For each internal node v, pick child w of maximum size and classify it as heavy. The other children are light.
- Heavy and light edges. Edge to a heavy child is heavy and edge to a light child is light.
- Heavy path decomposition. Removing light edges partitions tree into heavy paths.

- Light depth.
 - depth(v) = #edges on the path from v to the root.
 - lightdepth(v) = #light edges on the path from v to the root.
- What bounds can we get for depth and lightdepth?
- Lemma. For any node v, lightdepth(v) = $O(\log n)$.

- Idea.
 - Find a good nca labeling scheme on a path.
 - Apply on each heavy path.

- Nearest common ancestors on a path.
 - How can we make an nca labeling scheme for a path?

- Nearest common ancestors on a path.
 - Assign increasing IDs from root to leaf.
 - label(nca(v,w)) = min(ID(v), ID(w)).
- Analysis.
 - [log n] bit labels.

- Label construction.
 - For each heavy path $h_1 \cdots h_k$ from root to v store
 - HeavyID = deepest node on HP.
 - lightID = light child exit node in left-to-right order.
 - $label(v) = heavyID(h_1) \cdot lightID(h_1) \cdot heavyID(h_2) \cdot \cdot \cdot lightID(h_{k-1}) \cdot heavyID(h_k)$
- Analysis.
 - 2 [log n] bits per heavy path \Rightarrow O(log² n) bit label.

- Queries.
 - Compute longest common prefix L of IDs.
 - L contains either an even or odd number of IDs.

- Case 1. L contains odd number of IDs.
 - \Rightarrow last ID in L is heavyID
 - \Rightarrow v and w exit from same heavy path
 - \Rightarrow label(nca(v,w)) = L
- Case 2. L contains even number of IDs.
 - \Rightarrow last ID in L is lightID
 - \Rightarrow v and w enter same heavy path but leave at different exit points.
 - \Rightarrow label(nca(v,w)) = L · min(next ID in label(v), next ID in label(w))

Labeling scheme	label length	query time
ID encoding	O(n log n)	
heavy path decomposition	O(log²n)	

- Idea. Use variable length codes for IDs.
 - Small subtree \Rightarrow long IDs, large subtree \Rightarrow short IDs
 - LightID: need scheme to assign unique codes to distinct light children.
 - HeavyID: need scheme to assign unique codes to distinct nodes on heavy path that preserve order.

- Alphabetic codes. Variable length code that preserves order.
 - Let $Y = y_1, y_2, ..., y_k$ be sequence of positive integers with $s = y_1 + y_2 + \cdots + y_k$.
 - Consider binary representation of {0, ..., s-1}.
 - Partition into intervals of sizes y₁, y₂, ..., y_k.
 - In interval i pick number z_i with [log y_i] least significant bits all 0.
 - Code for y_i is z_i with [log y_i] removed.
- Small $y_i \Rightarrow$ long code, large $y_i \Rightarrow$ short code.
- Preserves order by lexicographic order.

- Alphabetic codes and IDs.
 - Encode lightIDs and heavyIDs with alphabetic codes.
 - \Rightarrow O(log n) bits labels and O(1) query time.

Labeling scheme	label length	query time
ID encoding	O(n log n)	
heavy path decomposition	O(log²n)	
alphabetic coding	O(log n)	O(1)