
Philip Bille

Distributed Data Structures

• Labeling Schemes

• Nearest Common Ancestor



Distributed Data Structures

• Labeling Schemes

• Nearest Common Ancestor



• Labeling scheme. 


• Input. Graph G and query q(.,.) on pairs of nodes.


• Preprocess. Assign a  label to each node v. 


• Query. Given only label(v) and label(w) compute q(v,w). 


• Goals. 


• Minimize maximum length of labels. 


• Fast queries. 

Labeling Schemes



• Parent labeling scheme. 

• Rooted tree with n nodes. 

• Parent queries. Is v a parent of w?


• How can we solve this?  

Labeling Schemes



• Parent labeling scheme. 

• Assign unique ID to each node. 

• label(v) = ID(v) · ID(parent(v))

• v is parent w iff ID(v) = ID(parent(w)).


• Analysis.

• 2⌈log n⌉ bit labels. 

Labeling Schemes
1

2

3

4

5 6

7

8

9

10

11

12
13

14

15 16

17
18

1920

21
22

23



• Applications. 


• Compact distributed data structures.


• Network routing, graph representation, search engines, etc.


• Graph theory. 


• Universal graphs, compression. 


• I/O complexity. 


• Minimal memory access. 

Labeling Schemes



Distributed Data Structures

• Labeling Schemes

• Nearest Common Ancestor



• Nearest common ancestors. 

• The ancestors of v is the set of nodes from v to the root. 

• The common ancestors of v and w are the ancestor of both v and w.

• The nearest common ancestor of v and w, nca(v, w), is the common ancestor of 

greatest depth.

• Nearest common ancestor problem. Preprocess a rooted tree T to support 


• nca(v,w): return the nearest common ancestor of v and w. 

Nearest Common Ancestors



• Applications. 

• Weighted matching 

• Minimum spanning trees

• Dominator trees 

• Approximate string matching 

• Dynamic planarity testing

• Network routing

• ....

Nearest Common Ancestors



• Goal. 

• Labeling scheme for nearest common ancestor queries with O(log n) bits labels. 

• Query must output label(nca(v,w)). 


• Solution in 3 steps.

• ID encoding.

• Heavy path decomposition.

• Alphabetic codes.

Nearest Common Ancestors



• ID encoding.

• Assign unique ID to each node. 


• How can we use these for an nca labeling scheme? 

Nearest Common Ancestors
1

2

3

4

5 6

7

8

9

10

11

12
13

14

15 16

17
18

1920

21
22

23



• ID encoding.

• Assign unique ID to each node. 

• label(v) = ID(v1) ⋅ ID(v2)⋅⋅⋅ID(vk), where  v1, ..., vk is the path from the root to v = vk.


• Queries. 

• Compute the longest prefix of IDs. 


• Analysis. 

• h⌈log n⌉ = O(n log n) bit labels. 

Nearest Common Ancestors
1

2

3

4

5 6

7

8

9

10

11

12
13

14

15 16

17
18

1920

21
22

23



Nearest Common Ancestors

Labeling scheme label length query time

ID encoding O(n log n)



• Size. The size of a node v is number of descendants of v. 

• Heavy and light nodes.


• Root is light.

• For each internal node v, pick child w of maximum size and classify it as heavy. 

The other children are light.

• Heavy and light edges. Edge to a heavy child is heavy and edge to a light child is 

light. 

• Heavy path decomposition. Removing light edges partitions tree into heavy paths.

Nearest Common Ancestors

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23



• Light depth. 

• depth(v) =  #edges on the path from v to the root. 

• lightdepth(v) = #light edges on the path from v to the root.


• What bounds can we get for depth and lightdepth? 

• Lemma. For any node v, lightdepth(v) = O(log n).

Nearest Common Ancestors

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23



• Idea. 

• Find a good nca labeling scheme on a path. 

• Apply on each heavy path. 

Nearest Common Ancestors

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23



• Nearest common ancestors on a path. 

• How can we make an nca labeling scheme for a path? 

Nearest Common Ancestors



• Nearest common ancestors on a path. 

• Assign increasing IDs from root to leaf. 

• label(nca(v,w)) = min(ID(v), ID(w)). 


• Analysis.

• ⌈log n⌉ bit labels.

Nearest Common Ancestors
1

2

3

4

5

6



• Label construction. 

• For each heavy path h1 ⋅⋅⋅ hk from root to v store


• HeavyID = deepest node on HP. 

• lightID = light child exit node in left-to-right order.


• label(v) = heavyID(h1) ⋅ lightID(h1) ⋅ heavyID(h2) ⋅ ⋅ ⋅ lightID(hk-1) ⋅ heavyID(hk) 

• Analysis.


• 2⌈log n⌉ bits per heavy path ⇒ O(log2 n) bit label.

Nearest Common Ancestors

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23

label = 5 ⋅ 2 ⋅ 1label = 1 ⋅ 1 ⋅ 3 ⋅ 2 ⋅ 1  



• Queries.

• Compute longest common prefix L of IDs.

• L contains either an even or odd number of IDs. 

Nearest Common Ancestors

1
1 1 1

1 1
1

1

1

1

1

1

3
2 2

2

4

7

8

108

10

23

label = 5 ⋅ 2 ⋅ 1label = 1 ⋅ 1 ⋅ 3 ⋅ 2 ⋅ 1  



• Case 1. L contains odd number of IDs.

• ⇒ last ID in L is heavyID 

• ⇒ v and w exit from same heavy path 

• ⇒ label(nca(v,w)) = L


• Case 2. L contains even number of IDs.

• ⇒ last ID in L is lightID 

• ⇒ v and w enter same heavy path but leave at different exit points. 

• ⇒ label(nca(v,w)) = L ⋅ min(next ID in label(v), next ID in label(w))

Nearest Common Ancestors

v

w

v

w



Nearest Common Ancestors

Labeling scheme label length query time

ID encoding O(n log n)

heavy path decomposition O(log2n)



• Idea. Use variable length codes for IDs.  

• Small subtree ⇒ long IDs, large subtree ⇒ short IDs

• LightID: need scheme to assign unique codes to distinct light children. 

• HeavyID: need scheme to assign unique codes to distinct nodes on heavy path 

that preserve order. 

Nearest Common Ancestors



• Alphabetic codes. Variable length code that preserves order. 

• Let Y = y1, y2, ..., yk be sequence of positive integers with s = y1 + y2 + ⋅⋅⋅ + yk.

• Consider binary representation of {0, ..., s-1}. 

• Partition into intervals of sizes y1, y2, ..., yk.

• In interval i pick number zi with ⌊log yi⌋ least significant bits all 0. 

• Code for yi is zi with ⌊log yi⌋ removed. 


• Small yi ⇒ long code, large yi ⇒ short code.

• Preserves order by lexicographic order.  

Nearest Common Ancestors

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 5 3 4 1

Y = 3,5,3,4,1 s = 16



• Alphabetic codes and IDs.

• Encode lightIDs and heavyIDs with alphabetic codes. 

• ⇒ O(log n) bits labels and O(1) query time. 

Nearest Common Ancestors

b1
a1

a2

a3 a4

b2
b3

b4

b5

b6



Nearest Common Ancestors

Labeling scheme label length query time

ID encoding O(n log n)

heavy path decomposition O(log2n)

alphabetic coding O(log n) O(1)


