Distributed Data Structures

- Labeling Schemes
- Nearest Common Ancestor

Philip Bille

Distributed Data Structures

- Labeling Schemes
- Nearest Common Ancestor

Labeling Schemes

- Labeling scheme.
- Input. Graph G and query $q(.,$.$) on pairs of nodes.$
- Preprocess. Assign a label to each node v.
- Query. Given only label(v) and label(w) compute $q(v, w)$.
- Goals.
- Minimize maximum length of labels.
- Fast queries.

Labeling Schemes

- Parent labeling scheme.
- Rooted tree with n nodes.
- Parent queries. Is v a parent of w?
- How can we solve this?

Labeling Schemes

- Parent labeling scheme.
- Assign unique ID to each node.
- label(v) = ID(v) •ID(parent(v))
- v is parent w iff $\mathrm{ID}(\mathrm{v})=\operatorname{ID}($ parent $(\mathrm{w}))$.
- Analysis.
- $2\lceil\log n\rceil$ bit labels.

Labeling Schemes

- Applications.
- Compact distributed data structures.
- Network routing, graph representation, search engines, etc.
- Graph theory.
- Universal graphs, compression.
- I/O complexity.
- Minimal memory access.

Distributed Data Structures

- Labeling Schemes
- Nearest Common Ancestor

Nearest Common Ancestors

- Nearest common ancestors.
- The ancestors of v is the set of nodes from v to the root.
- The common ancestors of v and w are the ancestor of both v and w.
- The nearest common ancestor of v and $w, n c a(v, w)$, is the common ancestor of greatest depth.
- Nearest common ancestor problem. Preprocess a rooted tree T to support
- nca(v,w): return the nearest common ancestor of v and w.

Nearest Common Ancestors

- Applications.
- Weighted matching
- Minimum spanning trees
- Dominator trees
- Approximate string matching
- Dynamic planarity testing
- Network routing
-

Nearest Common Ancestors

- Goal.
- Labeling scheme for nearest common ancestor queries with $\mathrm{O}(\log \mathrm{n})$ bits labels.
- Query must output label(nca(v,w)).
- Solution in 3 steps.
- ID encoding.
- Heavy path decomposition.
- Alphabetic codes.

Nearest Common Ancestors

- ID encoding.
- Assign unique ID to each node.
- How can we use these for an nca labeling scheme?

Nearest Common Ancestors

- ID encoding.
- Assign unique ID to each node.
- label $(\mathrm{v})=\operatorname{ID}\left(\mathrm{v}_{1}\right) \cdot \operatorname{ID}\left(\mathrm{v}_{2}\right) \cdots \operatorname{ID}\left(\mathrm{v}_{\mathrm{k}}\right)$, where $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ is the path from the root to $\mathrm{v}=\mathrm{v}_{\mathrm{k}}$.
- Queries.
- Compute the longest prefix of IDs.
- Analysis.
- $\mathrm{h}\lceil\log \mathrm{n}\rceil=\mathrm{O}(\mathrm{n} \log \mathrm{n})$ bit labels.

Nearest Common Ancestors

Labeling scheme	label length	query time
ID encoding	$O(n \log n)$	

Nearest Common Ancestors

- Size. The size of a node v is number of descendants of v.
- Heavy and light nodes.
- Root is light.
- For each internal node v, pick child w of maximum size and classify it as heavy. The other children are light.
- Heavy and light edges. Edge to a heavy child is heavy and edge to a light child is light.
- Heavy path decomposition. Removing light edges partitions tree into heavy paths.

Nearest Common Ancestors

- Light depth.
- depth(v) = \#edges on the path from v to the root.
- lightdepth(v) = \#light edges on the path from v to the root.
- What bounds can we get for depth and lightdepth?
- Lemma. For any node v, lightdepth(v) = O(log n).

Nearest Common Ancestors

- Idea.
- Find a good nca labeling scheme on a path.
- Apply on each heavy path.

Nearest Common Ancestors

- Nearest common ancestors on a path.
- How can we make an nca labeling scheme for a path?

Nearest Common Ancestors

- Nearest common ancestors on a path.
- Assign increasing IDs from root to leaf.
- label(nca(v,w)) = min(ID(v), ID(w)).
- Analysis.
- $\lceil\log \mathrm{n}\rceil$ bit labels.

Nearest Common Ancestors

- Label construction.
- For each heavy path $h_{1} \cdots h_{k}$ from root to v store
- HeavyID = deepest node on HP.
- lightID = light child exit node in left-to-right order.
- label $(\mathrm{v})=$ heavyID $\left(\mathrm{h}_{1}\right) \cdot \operatorname{lightID}\left(\mathrm{h}_{1}\right) \cdot$ heavyID $\left(\mathrm{h}_{2}\right) \cdot \cdot \cdot \operatorname{lightID}\left(\mathrm{h}_{\mathrm{k}-1}\right) \cdot \operatorname{heavyID}\left(\mathrm{h}_{\mathrm{k}}\right)$
- Analysis.
- $2\lceil\log n\rceil$ bits per heavy path $\Rightarrow \mathrm{O}\left(\log ^{2} n\right)$ bit label.

Nearest Common Ancestors

- Queries.
- Compute longest common prefix L of IDs.
- L contains either an even or odd number of IDs.

Nearest Common Ancestors

- Case 1. L contains odd number of IDs.
- \Rightarrow last ID in L is heavyID
- $\Rightarrow \mathrm{v}$ and w exit from same heavy path
- $\Rightarrow \operatorname{label}(\mathrm{nca}(\mathrm{v}, \mathrm{w}))=\mathrm{L}$
- Case 2. L contains even number of IDs.
- \Rightarrow last ID in L is lightID
- $\Rightarrow \mathrm{v}$ and w enter same heavy path but leave at different exit points.

Nearest Common Ancestors

Labeling scheme	label length	query time
ID encoding	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	
heavy path decomposition	$\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$	

Nearest Common Ancestors

- Idea. Use variable length codes for IDs.
- Small subtree \Rightarrow long IDs, large subtree \Rightarrow short IDs
- LightID: need scheme to assign unique codes to distinct light children.
- HeavyID: need scheme to assign unique codes to distinct nodes on heavy path that preserve order.

Nearest Common Ancestors

- Alphabetic codes. Variable length code that preserves order.
- Let $Y=y_{1}, y_{2}, \ldots$, y_{k} be sequence of positive integers with $s=y_{1}+y_{2}+\cdots+y_{k}$.
- Consider binary representation of $\{0, \ldots, \mathrm{~s}-1\}$.
- Partition into intervals of sizes $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{k}}$.
- In interval i pick number z_{i} with $\left\lfloor\log y_{i}\right\rfloor$ least significant bits all 0 .
- Code for y_{i} is z_{i} with $\left\lfloor\log y_{i}\right\rfloor$ removed.
- Small $y_{i} \Rightarrow$ long code, large $y_{i} \Rightarrow$ short code.
- Preserves order by lexicographic order.

Nearest Common Ancestors

- Alphabetic codes and IDs.
- Encode lightIDs and heavyIDs with alphabetic codes.
- $\Rightarrow \mathrm{O}(\log n)$ bits labels and $\mathrm{O}(1)$ query time.

Nearest Common Ancestors

Labeling scheme	label length	query time
ID encoding	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	
heavy path decomposition	$\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$	
alphabetic coding	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(1)$

