
Weekplan: External Memory I

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] The Input/Output Complexity of Sorting and Related Problems, A. Aggarwal and J. Vitter, CACM 1988. Set
P = 1 when reading this.

[2] Organization and Maintenance of Large Ordered Indexes, R. Bayer, E. McCreight, Acta Inform., 1972.

[3] Introduction to Algorithms, 3rd edition, Chap. 18, T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, 2009.

We recommend reading [1] and [3] in detail. [2] is the original paper introducing B-trees.

Exercises

1 [w] Prefix Sum Given an array A of N elements, the prefix-sum of A is the array P such that P[i] =
!

j≤i A[j].
Show how to compute the prefix sum of A efficiently in external memory

2 [w] Memory Hierarchy Determine the configuration of the memory hierarchy on your own computer. Also,
what is the cache-inclusion policy?

3 Stacks and Queues Consider stacks and queue in external memory. Solve the following exercises.

3.1 Show how to efficiently implement a stack in external memory. What is the worst-case and amortized I/Os
per operation?

3.2 Do the same for a queue.

4 RAM algorithms in External Memory We can implement any standard RAM algorithm directly in external
memory as follows:

• When we access a piece of data that is not already in internal memory, we move the block containing the
input data into internal memory.

• When the internal memory is becomes full, we write the block that contains the least recently used (has not
been used for the longest amount of time) data back to disk.

Solve the following exercises.

4.1 Consider your favourite sorting algorithm. What is the I/O complexity of this algorithm if implemented
directly in external memory? Compare the result with a good external algorithm.

4.2 Consider your favourite data structure for searching. What is the I/O complexity of this algorithm if imple-
mented directly in external memory? Compare the result with a good external data structure.

5 Multiway Merge Sort Analysis Carefully analyse the complexity of the multiway merge sort and algorithm
and show that it uses O(N/B logM/B(N/B)) I/Os.

1

6 Linked Lists Consider a data structure that maintains a sequence of elements L = e1, . . . , eN under the fol-
lowing operations:

• insert(e, e′): Insert element e′ immediately after element e in the sequential order in L (extending the length
of the sequence by 1).

• delete(e): Delete the element e in L.

• traverse(): Report the elements in L in sequence.

We assume that the arguments e and e′ are pointers to elements. Show how to efficiently implement the operations
in external memory. Hint: What is the optimal I/O bound you can hope to achieve for the traverse operation? Try
to achieve that.

7 Range Searching Suppose we want to extend B-trees to support the following range searching operations:

• report(i, j): Report all elements with keys k, such that i ≤ k ≤ j.

• count(i, j): Return the number of elements with keys k, such that i ≤ k ≤ j.

Solve the following exercises.

7.1 Show how to efficiently implement report. Your solution should have a good dependency on the size of the
output.

7.2 Show how to efficiently implement count.

8 Insertions in B-tree Consider the following B-tree of order 4. The capital letters represent subtrees. Show
the tree after inserting 59.

50 53 61 63

13 79

47 67 71

A

B C D

E

9 B-tree Construction Show how to efficiently construct a B-tree from an array of N elements.

10 Optimality of B-trees Suppose that we want to search among N keys. Furthermore, suppose that the only
way of accessing disk blocks is by following pointers. Show that a search takes at least Ω(logB N/M) I/Os in the
worst case. Also, compare this bound to the B-tree upper bound. Hint: Consider the size Ct of the set of blocks
that can be accessed in at most t I/Os. Assume that our memory initially is full of pointers.

11 Dynamic Programming Let S and T be strings of length N and consider the classic O(N2) time solution
for computing the longest common subsequence of S and T . Show how to implement the algorithm efficiently in
external memory.

2

