
Weekplan: Streaming I

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] Amit Chakrabarti: Data Stream Algorithms 2011 (updated July 2020) chapter 0 except 0.3 and chapter 1.

[2] R. Morris: Counting Large Numbers of Events in Small Registers.

We recommend reading the specified chapters and sections of [1] and [2] in detail.

Probability theory cheat-sheet

Variance: Recall, the variance is:

Var[X] = E[(X −E(X))2] = E[X 2]−E[X]2

Assume X i are uncorrelated, then:

Var

�

∑

i

X i

�

=
∑

i

Var[X i]

Markov’s inequality: For Y being a positive-valued random variable,

P[Y ≥ t]≤
E[Y]

t

Chebyshev’s inequality: For a random variable X with mean µX = E(X) and standard deviationσX =
p

Var[X],

P
�

|X −µX | ≥ tσX
�

≤
1
t2

Chernoff bound: X1, . . . , Xn independent random ∈ {0,1} with P[X i = 1] = p and X =
∑

i X i:

P [X > (1+δ)E[X]]<
�

eδ

(1+δ)1+δ

�

Exercises

The following exercise relates to the streaming model. Remember that we use the number of bits when we
calculate space in the streaming model.

1 Missing numbers

1.1 Assume you get n − 1 different integers from the set {1, . . . , n} in a stream. Can you deduce the missing
number using only O(log n) space?

1.2 Assume now you only get n − 2 different integers from the set. Can you find the two missing numbers in
O(log n) space?

1

2 Largest numbers Given n numbers, suppose we want to find the n/k largest.

2.1 In the RAM-model, how would you solve this task? What is your total running time?

2.2 In the streaming model, how little space is necessary to solve this task? What is your running time? Can you
get a competitive running time?

3 Reservoir sampling1 Reservoir sampling is a method for choosing an item item uniformly at random from
an arbitrarily long stream of data; for example, the sequence of packets that pass through a router, or the sequence
of IP addresses that access a given web page. Like all data stream algorithms, this algorithm must process each
item in the stream quickly, using very little memory.

Algorithm 1: GETONESAMPLE(stream S)
`← 0
while S is not done do

x ← next item in S
`← `+ 1
if RANDOM(`) = 1 then

sample← x (?)
return sample

end

Here RANDOM(a) is a random number generator that uniformly at random returns an integer between 1 and
a (both included). At the end of the algorithm, the variable ` stores the length of the input stream S; this number
is not known to the algorithm in advance. If S is empty, the output of the algorithm is (correctly!) undefined. In
the following, consider an arbitrary non-empty input stream S, and let n denote the (unknown) length of S.

3.1 Prove that the item returned by GETONESAMPLE(S) is is chosen uniformly at random from S.

3.2 What is the exact expected number of times that GETONESAMPLE(S) executes line (?)?

3.3 What is the exact expected value of ` when GETONESAMPLE(S) executes line (?) for the last time?

3.4 What is the exact expected value of ` when either GETONESAMPLE(S) executes line (?) for the second time
or the algorithm ends (whichever happens first)?

3.5 Describe and analyze an algorithm that returns a subset of k distinct items chosen uniformly at random from
a data stream of length at least k. The integer k is given as part of the input to your algorithm. Prove that
your algorithm is correct.

For example, if k = 2 and the stream contains the sequence 〈♠,♥,♦,♣〉, the algorithm should return the
subset {♦,♠} with probability 1/6.

The following exercises relate to chapter 1 in [1].

4 Frequency [w] Consider the trivial solution to the frequency problem: Keeping as many counters as there
are colours. What is the space-consumption?

5 Misra-Gries [w] Run Misra-Gries’ algorithm on the following stream with k = 3. What do you output? How
large was your largest counter?

b a b b a m b a m b a n a n a n a n a

6 Tightness of Misra-Gries Given k and n, design a stream of length n that contains some character n/(k+1)
times yet this character is not output by Misra-Gries’ algorithm.

7 Exercises from [1] Solve exercises 1-1 and 1-3 from [1].
1This exercise is from Jeff Erickson’s notes on streaming

2

