Distributed Algorithms

Congest Model

Congest Model

- Network with n computers (nodes) connected via communication channels (edges).

- Identifiers. Nodes has a unique identifier id: $V \rightarrow\left\{1,2, \ldots, n^{c}\right\}$ for some constant c.
- Messages. Nodes can exchange messages with neighbors.
- Communication rounds. All nodes perform the same algorithm synchronously in parallel:
- Receive messages
- Process
- Send
- Message size. In each round over each edge send message of size O(logn) bits.

Path colouring

- Path coloring. No neighbouring nodes have the same color.

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

Path colouring

- Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors $\{1,2,3\}$.
- Impossible without identifiers.

- P3C algorithm.
- $c=\mathrm{id}$.
- Repeat forever:
- Send message c to all neighbors.
- Receive messages M from neighbors.
- If $c \neq\{1,2,3\}$ and $c>$ all messages received in this round:
- $c \leftarrow \min (\{1,2,3\} \backslash M\})$

All-Pairs Shortest Paths

- All-Pairs Shortest Paths. The local output of a node is the identities of all other nodes and the distance to them.
- Algorithm.
- BFS tree from a specific node (leader)
- Use BFS tree without a leader
- Pipeline BFS computations.

BFS

- BFS. Local output from each node is the distance to the leader s.
- Algorithm.
- Round 0: leader sends "wave" to all neighbors, switch to state 0 and stops.
- Round i : Each node that is not stopped
- if it receives "wave" from some port(s)
- switch to state i.
- send message "wave" to all neighbors and stop.

BFS

- BFS. Local output from each node is the distance to the leader s.
- Algorithm.
- Round 0: leader sends "wave" to all neighbors, switch to state 0 and stops.
- Round i : Each node that is not stopped
- if it receives "wave" from some port(s)
- switch to state i.
- send message "wave" to all neighbors and stop.

BFS

- BFS. Local output from each node is the distance to the leader s.
- Algorithm.
- Round 0: leader sends "wave" to all neighbors, switch to state 0 and stops.
- Round i : Each node that is not stopped
- if it receives "wave" from some port(s)
- switch to state i.
- send message "wave" to all neighbors and stop.

BFS

- BFS. Local output from each node is the distance to the leader s.
- Algorithm.
- Round 0: leader sends "wave" to all neighbors, switch to state 0 and stops.
- Round i : Each node that is not stopped
- if it receives "wave" from some port(s)
- switch to state i.
- send message "wave" to all neighbors and stop.

BFS

- BFS. Local output from each node is the distance to the leader s.
- Algorithm.
- Round 0: leader sends "wave" to all neighbors, switch to state 0 and stops.
- Round i : Each node that is not stopped
- if it receives "wave" from some port(s)
- switch to state i.
- send message "wave" to all neighbors and stop.
- Additional information: parent and children in BFS tree?

- BFS. Local output from each node is the distance to the leader s.
- Algorithm.
- Round 0: leader sends "wave" to all neighbors, switch to state 0 and stops.
- Round i : Each node that is not stopped
- if it receives "wave" from some port(s)
- switch to state i.
- send message "wave" to all neighbors and stop.
- Additional information: parent and children in BFS tree.
- When receiving "wave" request, choose one to accept and send accept back.

Wave

	Computation	Send
Round 1		s: $0 ?->\mathrm{A}, \mathrm{B}$

Wave

	Computation	Send
Round 1		s: 0? $->A, B$

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: $1 ?->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D

Wave

	Computation	Send
Round 1		s: 0 ? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? -> D
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept $->$ A D: 2? -> C D: 2? -> B

Wave

	Computation	Send
Round 1		s: 0 ? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? -> D
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept $->$ A D: 2? -> C D: 2? -> B

Wave

	Computation	Send
Round 1		s: 0 ? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? -> D
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept $->$ A D: 2? -> C D: 2? -> B

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$\mathrm{d}(\mathrm{C})=2, \mathrm{p}(\mathrm{C})=\mathrm{A}$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 \text { ? ->D } \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept -> A D: 2? -> C D: 2 ? $->B$
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$\mathrm{d}(\mathrm{C})=2, \mathrm{p}(\mathrm{C})=\mathrm{A}$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 \text { ? ->D } \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept -> A D: 2? -> C D: 2 ? $->B$
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$\mathrm{d}(\mathrm{D})=2, \mathrm{p}(\mathrm{D})=\mathrm{A}$	$\begin{aligned} & \text { D: accept -> A } \\ & \text { D: } 2 ?->C \\ & \text { D: } 2 ?->B \end{aligned}$
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s
Round 5	$\mathrm{C}(\mathrm{C})=\{ \}, \mathrm{a}(\mathrm{C})=1$	C: ack $->$ A
	$C(D)=\{ \}, a(D)=1$	D: ack -> A

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s $\text { B: } 1 \text { ? -> D }$
Round 3	$C(s)=\{A, B\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	$\begin{aligned} & \text { D: accept -> A } \\ & \text { D: 2? -> C } \\ & \text { D: } 2 \text { ? -> B } \end{aligned}$
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s
Round 5	$C(C)=\{ \}, \mathrm{a}(\mathrm{C})=1$	C: ack -> A
	$C(D)=\{ \}, a(D)=1$	D: ack -> A

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? -> C, A: 1? -> D
	$d(B)=1, p(B)=s$	B: accept -> s B: 1? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept ->A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	$\begin{aligned} & \text { D: accept -> A } \\ & \text { D: 2? -> C } \\ & \text { D: } 2 \text { ? -> B } \end{aligned}$
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s
Round 5	$C(C)=\{ \}, a(C)=1$	C: ack -> A
	$C(D)=\{ \}, a(D)=1$	D: ack -> A
Round 7	$a(A)=1$	A: ack $->$ S

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? $->C$, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1 ? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept -> A D: 2? -> C D: 2 ? -> B
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s
Round 5	$\mathrm{C}(\mathrm{C})=\{ \}, \mathrm{a}(\mathrm{C})=1$	C: ack -> A
	$C(D)=\{ \}, a(D)=1$	D: ack -> A
Round 7	$a(A)=1$	A: ack -> s

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? $->C$, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1 ? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept -> A D: 2? -> C D: 2 ? -> B
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s
Round 5	$\mathrm{C}(\mathrm{C})=\{ \}, \mathrm{a}(\mathrm{C})=1$	C: ack -> A
	$C(D)=\{ \}, a(D)=1$	D: ack -> A
Round 7	$a(A)=1$	A: ack -> s
Round 8	$a(s)=1$	

Wave

	Computation	Send
Round 1		s: 0? -> A, B
Round 2	$d(A)=1, p(A)=s$	A: accept -> s, A: 1? $->C$, A: 1 ? $->D$
	$d(B)=1, p(B)=s$	B: accept -> s B: 1 ? -> D
Round 3	$C(s)=\{\mathrm{A}, \mathrm{B}\}$	
	$d(C)=2, p(C)=A$	$\begin{aligned} & \text { C: accept -> A } \\ & \text { C: } 2 ?->D \end{aligned}$
	$d(D)=2, p(D)=A$	D: accept -> A D: 2? -> C D: 2 ? -> B
Round 4	$C(A)=\{C, D\}$	
	$C(B)=\{ \}, a(B)=1$	B: ack -> s
Round 5	$\mathrm{C}(\mathrm{C})=\{ \}, \mathrm{a}(\mathrm{C})=1$	C: ack -> A
	$C(D)=\{ \}, a(D)=1$	D: ack -> A
Round 7	$a(A)=1$	A: ack -> s
Round 8	$a(s)=1$	

Electing a Leader

- Use BFS!?
- Algorithm.
- Run Wave(v) from every node.
- Augment messages with identity of root node.
- A node only sends messages related smallest id seen so far.
- When a node has received acknowledgment from all its children it sends a message (using the BFS tree) to all other nodes that it is the leader.

Electing a Leader

Electing a Leader

- Correctness.
- Exactly one node will receive acknowledgment from all its children in its BFS tree (namely $s=\min \mathrm{V}$).
- Number of rounds.
- O(diam(G))
- CONGEST model.
- Every node sends only messages related to one BFS process in each round.

APSP

- Local output. Every node knows the identity of all other nodes and the distance to them.
- Run Wave(v) from all nodes:
- In parallel? Messages too large!
- Sequentially? O(n diam(G)) rounds
- Token Walk.
- Move a token in the BFS tree T_{s} of the leader.
- Spend 2 rounds in each node before continuing.
- First time we meet a node v in the walk start Wave(v).

APSP

- Token Walk.
- Move a token in the BFS tree T_{s} of the leader.
- Spend 2 rounds in each node before continuing.
- First time we meet a node v in the walk start Wave (v).

APSP

- Local output. Every node nodes the identity of all other nodes and the distance to them.
- Token Walk.
- Move a token in the BFS tree T_{s} of the leader.
- Spend 2 rounds in each node before continuing.
- First time we meet a node v in the walk start Wave(v).
- Claim. Two waves Wave(u) and Wave(v) never collides.
- Assume Wave((u) starts before Wave(v).
- $d=d_{G}(u, v)$
- T_{s} is a subgraph of G.
- It takes at least $2 d$ rounds to move the token from u to v.
- It takes d rounds for Wave (u) to reach v.
- When Wave (v) is started $\operatorname{Wave}(u)$ has already passed.

- Wave((v) never catches up with $\operatorname{Wave}(u)$ (move at same speed).
- Local output. Every node nodes the identity of all other nodes and the distance to them.
- Token Walk.
- Move a token in the BFS tree T_{s} of the leader.
- Spend 2 rounds in each node before continuing.
- First time we meet a node v in the walk start Wave(v).
- Rounds.
- After $O(n)$ rounds all Waves have been started.
- Number of rounds: $\mathrm{O}(\mathrm{n}+\operatorname{diam}(\mathrm{G}))=\mathrm{O}(\mathrm{n})$.

