
Distributed Algorithms
Congest Model

• Network with n computers (nodes) connected via communication channels (edges).

• Identifiers. Nodes has a unique identifier id: for some constant .

• Messages. Nodes can exchange messages with neighbors.

• Communication rounds. All nodes perform the same algorithm synchronously in

parallel:

• Receive messages

• Process

• Send

• Message size. 	In each round over each edge send message of size O(logn) bits.

V → {1,2,…, nc} c

Congest Model

• Path coloring. No neighbouring nodes have the same color.

Path colouring

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

12 32 4 15 20 23 29 8 10 7

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

12 32 4 15 20 23 29 8 10 7

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

12 1 4 15 20 23 1 8 1 7

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

12 1 4 15 20 23 1 8 1 7

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 4 15 20 2 1 2 1 2

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 4 15 20 2 1 2 1 2

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 4 15 1 2 1 2 1 2

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 4 15 1 2 1 2 1 2

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 4 2 1 2 1 2 1 2

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 4 2 1 2 1 2 1 2

• Path coloring. No neighbouring nodes have the same color.

• 3-coloring. Color path with 3 colors .

• Impossible without identifiers.

• P3C algorithm.

• = id.

• Repeat forever:

• Send message c to all neighbors.

• Receive messages from neighbors.

• If and > all messages received in this round:

•

{1,2,3}

c

M
c ≠ {1,2,3} c

c ← min({1,2,3}∖M})

Path colouring

2 1 3 2 1 2 1 2 1 2

• All-Pairs Shortest Paths. The local output of a node is the identities of all other
nodes and the distance to them.

• Algorithm.

• BFS tree from a specific node (leader)

• Use BFS tree without a leader

• Pipeline BFS computations.

All-Pairs Shortest Paths

• BFS. Local output from each node is the distance to the leader .

• Algorithm.

• Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.

• Round : Each node that is not stopped

• if it receives “wave” from some port(s)

• switch to state .

• send message “wave” to all neighbors and stop.

s

i

i

BFS

s

• BFS. Local output from each node is the distance to the leader .

• Algorithm.

• Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.

• Round : Each node that is not stopped

• if it receives “wave” from some port(s)

• switch to state .

• send message “wave” to all neighbors and stop.

s

i

i

BFS

s
0

wave

wave

• BFS. Local output from each node is the distance to the leader .

• Algorithm.

• Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.

• Round : Each node that is not stopped

• if it receives “wave” from some port(s)

• switch to state .

• send message “wave” to all neighbors and stop.

s

i

i

BFS

s
0

wave

wave
wave

w
ave

1

1

• BFS. Local output from each node is the distance to the leader .

• Algorithm.

• Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.

• Round : Each node that is not stopped

• if it receives “wave” from some port(s)

• switch to state .

• send message “wave” to all neighbors and stop.

s

i

i

BFS

s
0

1

1

2

2

2

3

• BFS. Local output from each node is the distance to the leader .

• Algorithm.

• Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.

• Round : Each node that is not stopped

• if it receives “wave” from some port(s)

• switch to state .

• send message “wave” to all neighbors and stop.

• Additional information: parent and children in BFS tree?

s

i

i

BFS

s
0

1

1

2

2

2

3

• BFS. Local output from each node is the distance to the leader .

• Algorithm.

• Round 0: leader sends “wave” to all neighbors, switch to state 0 and stops.

• Round : Each node that is not stopped

• if it receives “wave” from some port(s)

• switch to state .

• send message “wave” to all neighbors and stop.

• Additional information: parent and children in BFS tree.

• When receiving “wave” request, choose one to accept and send accept back.

s

i

i

BFS

s
0

1

2

2

2

3

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 1, p(C) = A
C: accept -> A
C: 1? -> D
C: 1? -> A

d(D) = 1, p(D) = A
D: accept -> A
D: 1? -> C
D: 1? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 1, p(C) = A
C: accept -> A
C: 1? -> D
C: 1? -> A

d(D) = 1, p(D) = A
D: accept -> A
D: 1? -> C
D: 1? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

0?

0?

d = 0

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 1, p(C) = A
C: accept -> A
C: 1? -> D
C: 1? -> A

d(D) = 1, p(D) = A
D: accept -> A
D: 1? -> C
D: 1? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

d = 0

d = 1

d = 1

0?

0?

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 1, p(C) = A
C: accept -> A
C: 1? -> D
C: 1? -> A

d(D) = 1, p(D) = A
D: accept -> A
D: 1? -> C
D: 1? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

d = 0

d = 1

d = 1

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 1, p(C) = A
C: accept -> A
C: 1? -> D
C: 1? -> A

d(D) = 1, p(D) = A
D: accept -> A
D: 1? -> C
D: 1? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

d = 0

d = 1

d = 1

1?

1?

1?

accept

accept

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

d = 0

d = 1

d = 1

1?

1?

1?

accept

acceptC = {A, B}
d = 2

d = 2

Wave

s

A

B

C

D

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

accept

accept

C = {A, B}
d = 2

d = 2

2?

2?

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

accept

accept

C = {A, B}
d = 2

d = 2

2?

2?

C = {C, D}

C = {}

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

ack

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

ack

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

ack

C = {}

C = {}
a = 1

a = 1

ack

ack

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

C = {}

C = {}
a = 1

a = 1

ack

ack

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

C = {}

C = {}
a = 1

a = 1

ack

ack

a = 1

ack

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

C = {}

C = {}
a = 1

a = 1
a = 1

ack

Computation Send

Round 1 s: 0? -> A, B

Round 2
d(A) = 1, p(A) = s

A: accept -> s,
A: 1? -> C,
A: 1? -> D

d(B) = 1, p(B) = s B: accept -> s
B: 1? -> D

Round 3

C(s) = {A, B}

d(C) = 2, p(C) = A C: accept -> A
C: 2? -> D

d(D) = 2, p(D) = A
D: accept -> A
D: 2? -> C
D: 2? -> B

Round 4
C(A) = {C,D}
C(B) = {}, a(B) = 1 B: ack -> s

Round 5
C(C) = {}, a(C) = 1 C: ack -> A
C(D) = {}, a(D) = 1 D: ack -> A

Round 7 a(A) = 1 A: ack -> s

Round 8 a(s) = 1

Wave

s

A

B

C

D
d = 0

d = 1

d = 1

C = {A, B}
d = 2

d = 2C = {C, D}

C = {}
a = 1

C = {}

C = {}
a = 1

a = 1
a = 1

ack

a = 1

• Use BFS!?

• Algorithm.

• Run Wave(v) from every node.

• Augment messages with identity of root node.

• A node only sends messages related smallest id seen so far.

• When a node has received acknowledgment from all its children it sends a

message (using the BFS tree) to all other nodes that it is the leader.

Electing a Leader

8
(3?, 7)

(accept, 10)(3?, 10)
8

(accept, 7)

(4?, 7)

(4?, 7)

(4?, 7)

Electing a Leader

• Correctness.

• Exactly one node will receive acknowledgment from all its children in its BFS tree

(namely s = min V).

• Number of rounds.

• O(diam(G))

• CONGEST model.

• Every node sends only messages related to one BFS process in each round.

Electing a Leader

• Local output. Every node knows the identity of all other nodes and the distance to
them.

• Run Wave(v) from all nodes:

• In parallel?

• Sequentially?

• Token Walk.

• Move a token in the BFS tree of the leader.

• Spend 2 rounds in each node before continuing.

• First time we meet a node in the walk start Wave().

Ts

v v

APSP

Messages too large!
O(n diam(G)) rounds

• Token Walk.

• Move a token in the BFS tree of the leader.

• Spend 2 rounds in each node before continuing.

• First time we meet a node in the walk start Wave().

Ts

v v

APSP

• Local output. Every node nodes the identity of all other nodes and the distance to
them.

• Token Walk.

• Move a token in the BFS tree of the leader.

• Spend 2 rounds in each node before continuing.

• First time we meet a node in the walk start Wave().

• Claim. Two waves Wave() and Wave() never collides.

• Assume Wave() starts before Wave().

•

• is a subgraph of .

• It takes at least rounds to move the token from to .

• It takes rounds for Wave() to reach .

• When Wave() is started Wave() has already passed.

• Wave() never catches up with Wave() (move at same speed).

Ts

v v
u v

u v
d = dG(u, v)
Ts G

2d u v
d u v

v u
v u

APSP

• Local output. Every node nodes the identity of all other nodes and the distance to
them.

• Token Walk.

• Move a token in the BFS tree of the leader.

• Spend 2 rounds in each node before continuing.

• First time we meet a node in the walk start Wave().

• Rounds.

• After O(n) rounds all Waves have been started.

• Number of rounds: O(n + diam(G)) = O(n).

Ts

v v

APSP

