Distributed Algorithms 1

Philip Bille Inge Li Gørtz Eva Rotenberg

Distributed Networks

all our favourite questions:

- Is vertex A connected with vertex B?
- shortest route from A to B?
- colouring?
- (minimum/maximum cut, bipartiteness, etc.)

Reminder, (k-) colouring: Each vertex is given a colour $c : V \to \{1, \ldots, k\}$ such that each edge uv is bichromatic, i.e. $c(u) \neq c(v)$. RAM-model colouring of a path? Trivial. 1 - 2 - 1 - 2 - 1 - 2 - cdotsDistributed colouring of a path? Less trivial.

Distributed path colouring algorithm: P3C

Assume every vertex has a unique identifier of $O(\log n)$ bits.

Round 1: Send ID to neighbours All other rounds: Read neighbours' ID if my ID is largest and > 3, then choose ID \in {1, 2, 3}. Send ID to neighbours. Neighbours cannot both be largest $\Rightarrow c(v_i) \neq c(v_{i+1})$

All IDs are different \Rightarrow some v_i is max \Rightarrow at least that v_i will change colour \Rightarrow every round, at least one fewer vertex has ID> 3 \Rightarrow terminates. **Question:** How many rounds before this terminates? worst-case n + 1.

Distributed path colouring algorithm: Faster colouring

Assume all IDs are in $\{1, 2, \dots, 31\}$.

Correctness: Consider v_j , v_{j+1} , v_{j+2} . If v_j and v_{j+1} differ in the same digit as v_{j+1} and v_{j+2} , then the *bit value* is different. Otherwise, the bit index is different. Analysis: Exercise.

Randomised colouring

Imagine sitting with 5 friends, and everyone rolls one dice. Probability you roll something different from everyone else? Their dice values are at most 5 different values. So at least 1/6 chance you roll something unique.

Randomised 3-colouring a path

Even easier: only two friends.

Roll "3-sided dice" until unique among neighbours, stop once unique. 1st round: Probability $\geq 1/3$ of rolling something unique and stopping. 2nd round: Another $\geq 1/3$ chance of stopping,

so $\leq 2/3 \cdot 2/3$ chance of <u>not</u> stopping in rounds 1 or 2. 3rd round: $\leq 2/3 \cdot 2/3 \cdot 2/3$ risk of <u>not</u> stopping in rounds 1, 2, or 3.

k'th round: $\leq (2/3)^k$ risk of <u>not</u> stopping in rounds 1, 2, ..., k. So, if $k = (C+1) \log_{3/2} n$, chance of **not stopped** is $\leq 1/n^{C+1}$. But that was for one vertex. If there are *n* vertices, the risk of <u>any one</u> not stopped becomes $\leq n \cdot 1/n^{C+1} = 1/n^C$

Randomised Δ +1-colouring

Degree Δ , with a Δ + 1-sided dice, we risk a $1/(\Delta + 1)$ chance of luck. The argument from before with considering $(\Delta/(\Delta + 1))^k$ is no longer so attractive for large values of Δ . Solution: somehow take turns. Degree: Δ .

Algorithm: Every node who has not halted is active with probability $\frac{1}{2}$.

Not active: color=blank. Active: random free colour.

When unique: stick with that colour and halt.

Consider an active vertex with k non-halting neighbours, and k + 1 free colours, conflict with neighbour x is: < 1/k if x is active, 0 if x is inactive. x is active with probability $\frac{1}{2}$. So conflict probability $\frac{1}{2} \cdot 1/k$. Since we had k non-halting neighbours, total conflict probability $\leq k \cdot \frac{1}{2} \cdot 1/k = \frac{1}{2}$. Total probability: $\geq \frac{1}{2} \cdot \frac{1}{2}$ to be active and unique. So, after κ rounds, $\leq (3/4)^{\kappa}$ risk of vertex v not halting.

As before: $\kappa = (C + 1) \log_{4/3} n \Rightarrow 1/n^C$ total risk of not halting.