Distributed Algorithms 1

Philip Bille Inge Li Gørtz Eva Rotenberg

Distributed Networks

all our favourite questions:

- Is vertex A connected with vertex B ?
- shortest route from A to B ?
- colouring?
- (minimum/maximum cut, bipartiteness, etc.)

Distributed: Colouring a path

Reminder, (k -) colouring:
Each vertex is given a colour $c: V \rightarrow\{1, \ldots, k\}$ such that each edge $u v$ is bichromatic, i.e. $c(u) \neq c(v)$. RAM-model colouring of a path? Trivial. 1-2-1-2-1-2-cdots
Distributed colouring of a path? Less trivial.

Distributed path colouring algorithm: P3C

Assume every vertex has a unique identifier of $O(\log n)$ bits.

 \ldots

Round 1:
Send ID to neighbours
All other rounds:
Read neighbours' ID if my ID is largest and >3, then choose ID $\in\{1,2,3\}$. Send ID to neighbours. Neighbours cannot both be largest $\Rightarrow c\left(v_{i}\right) \neq c\left(v_{i+1}\right)$

All IDs are different \Rightarrow some v_{i} is max \Rightarrow at least that v_{i} will change colour \Rightarrow every round, at least one fewer vertex has ID $>3 \Rightarrow$ terminates.
Question: How many rounds before this terminates? worst-case $n+1$.

Distributed path colouring algorithm: Faster colouring

Assume all IDs are in $\{1,2, \ldots 31\}$.

Correctness: Consider v_{j}, v_{j+1}, v_{j+2}. If v_{j} and v_{j+1} differ in the same digit as v_{j+1} and v_{j+2}, then the bit value is different. Otherwise, the bit index is different. Analysis: Exercise.

(Exercises)

Randomised colouring

Imagine sitting with 5 friends, and everyone rolls one dice.
Probability you roll something different from everyone else?
Their dice values are at most 5 different values.
So at least $1 / 6$ chance you roll something unique.

Randomised 3-colouring a path

Even easier: only two friends.
Roll " 3 -sided dice" until unique among neighbours, stop once unique.
1st round: Probability $\geq 1 / 3$ of rolling something unique and stopping.
2 nd round: Another $\geq 1 / 3$ chance of stopping,
so $\leq 2 / 3 \cdot 2 / 3$ chance of not stopping in rounds 1 or 2 .
3rd round: $\leq 2 / 3 \cdot 2 / 3 \cdot 2 / 3$ risk of not stopping in rounds 1,2 , or 3 .
k 'th round: $\leq(2 / 3)^{k}$ risk of not stopping in rounds $1,2, \ldots, k$.
So, if $k=(C+1) \log _{3 / 2} n$, chance of not stopped is $\leq 1 / n^{C+1}$.
But that was for one vertex. If there are n vertices, the risk of any one not stopped becomes $\leq n \cdot 1 / n^{C+1}=1 / n^{C}$

Randomised $\Delta+1$-colouring

Degree Δ, with a $\Delta+1$-sided dice, we risk a $1 /(\Delta+1)$ chance of luck. The argument from before with considering $(\Delta /(\Delta+1))^{k}$ is no longer so attractive for large values of Δ.
Solution: somehow take turns.

Randomised $\Delta+1$-colouring

Degree: Δ.
Algorithm: Every node who has not halted is active with probability $\frac{1}{2}$.
Not active: color=blank. Active: random free colour.

When unique: stick with that colour and halt.
Consider an active vertex with k non-halting neighbours, and $k+1$ free colours, conflict with neighbour x is: $<1 / k$ if x is active, 0 if x is inactive. x is active with probability $\frac{1}{2}$. So conflict probability $\frac{1}{2} \cdot 1 / k$.
Since we had k non-halting neighbours, total conflict probability $\leq k \cdot \frac{1}{2} \cdot 1 / k=\frac{1}{2}$. Total probability: $\geq \frac{1}{2} \cdot \frac{1}{2}$ to be active and unique. So, after κ rounds, $\leq(3 / 4)^{\kappa}$ risk of vertex v not halting. As before: $\kappa=(C+1) \log _{4 / 3} n \Rightarrow 1 / n^{C}$ total risk of not halting.

