Weekplan: Streaming I

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] Amit Chakrabarti: Data Stream Algorithms 2011 (updated July 2020) chapter 0 except 0.3 and chapter 1.

We recommend reading the specified chapters and sections of [1] in detail.

Exercises

The following exercise relates to the streaming model. Remember that we use the number of bits when we calculate space in the streaming model.

- **1 Largest numbers** Given *m* numbers from the universe $[n] = \{1, ..., n\}$, suppose we want to find the *k* largest.
- 1.1 In the RAM-model, how would you solve this task? What is your total running time?
- 1.2 In the streaming model, would you solve this task? What is your space usage? What is your running time?

2 Missing numbers

- **2.1** Assume you get n 1 different integers from the set $\{1, ..., n\}$ in a stream. Can you deduce the missing number using only $O(\log n)$ space?
- **2.2** [*] Assume now you only get n 2 different integers from the set. Can you find the two missing numbers in $O(\log n)$ space?

3 Reservoir sampling¹ Reservoir sampling is a method for choosing an item item uniformly at random from an arbitrarily long stream of data; for example, the sequence of packets that pass through a router, or the sequence of IP addresses that access a given web page. Like all data stream algorithms, this algorithm must process each item in the stream quickly, using very little memory.

Algorithm 1: GETONESAMPLE(stream S)
$\ell \leftarrow 0$
while S is not done do
$x \leftarrow \text{next item in } S$
$\ell \leftarrow \ell + 1$
if RANDOM(ℓ) = 1 then
$ sample \leftarrow x \qquad (\star)$
end
return sample

Here RANDOM(*a*) is a random number generator that uniformly at random returns an integer between 1 and *a* (both included). At the end of the algorithm, the variable ℓ stores the length of the input stream *S*; this number is not known to the algorithm in advance. If *S* is empty, the output of the algorithm is (correctly!) undefined. In the following, consider an arbitrary non-empty input stream *S*, and let *n* denote the (unknown) length of *S*.

3.1 Prove that the item returned by GETONESAMPLE(*S*) is is chosen uniformly at random from S.

¹This exercise is from Jeff Erickson's notes on streaming

- **3.2** What is the expected number of times that GETONESAMPLE(*S*) executes line (*)?
- **3.3** What is the expected value of ℓ when GETONESAMPLE(S) executes line (*) for the *last* time?
- **3.4** What is the expected value of ℓ when either GETONESAMPLE(*S*) executes line (*) for the *second* time or the algorithm ends (whichever happens first)?
- **3.5** Describe and analyze an algorithm that returns a subset of k distinct items chosen uniformly at random from a data stream of length at least k. The integer k is given as part of the input to your algorithm. Prove that your algorithm is correct.

For example, if k = 2 and the stream contains the sequence $\langle \blacklozenge, \heartsuit, \diamondsuit, \diamondsuit, \diamondsuit \rangle$, the algorithm should return the subset $\{\diamondsuit, \diamondsuit\}$ with probability 1/6.

The following exercises relate to chapter 1 in [1].

4 Frequency [w] Consider the trivial solution to the frequency problem: Keeping as many counters as there are colours. What is the space-consumption?

5 Misra-Gries [w] Run Misra-Gries' algorithm on the following stream with k = 3. What do you output? How large was your largest counter?

babbambambananana

6 Tightness of Misra-Gries Given k and m, design a stream of length m that contains some character m/k times yet this character is not output by Misra-Gries' algorithm.

7 Exercise 1-1 from [1] Let \hat{m} be the sum of all counters maintained by the Misra-Gries algorithm after it has processed an input stream, i.e., $\hat{m} = \sum_{\ell \in \text{kevs}(A)} A[\ell]$. Prove that

$$f_j - \frac{m - \hat{m}}{k} \leq \hat{f}_j \leq f_j \;.$$

8 Merging two streams This exercise is almost identical to exercise 1-3 from [1].

Suppose we have run the (one-pass) Misra-Gries algorithm on two streams σ_1 and σ_2 , thereby obtaining a summary for each stream consisting of k-1 counters. Let m_i denote the length of the stream σ_i . Consider the following algorithm for merging these two summaries to produce a single k-1-counter summary.

Prove that the resulting summary is good for the combined stream $\sigma_1 \circ \sigma_2$ in the sense that frequency estimates from it satisfy the bounds given for Misra-Gries, namely

$$f_j - \frac{m}{k} \le \hat{f}_j \le f_j ,$$

where $m = m_1 + m_2$ is the length of the combined stream.