
Sketching

Inge Li Gørtz

These notes are heavily inspired by the lecture notes by Moses Charikar and Chandra
Chekuri on the same subject.

1 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the calculation
or estimate of a property of the data. In other words a compact summary of the data.

An important attribute of sketches is that they are composable. Suppose we have data
streams S1 and S2 with corresponding sketches sk(S1) and sk(S2). We wish there to be an
efficiently computable function f where

sk(S1 ∪ S2) = f(sk(S1), sk(S2)) .

2 Hashing

A hash function h : U → [m] is pairwise independent if for all x 6= y ∈ U and q, r ∈ [m]:

P [h(x) = q ∧ h(y) = r] =
1

m2
.

Equivalently, the following two conditions hold:

• for any x ∈ U , h(x) is uniform in [m],

• for any x 6= y ∈ U , h(x) and h(y) are independent.

3 CountMin sketch

The CountMin sketch is a solution to the heavy hitters problem developed by Cormode and
Muthukrishnan [1]. The idea of the CountMin sketch is to use a collection of pairwise indepen-
dent hash functions to hash each element in the stream, keeping track of the number of times
each bucket is hashed to.

Initialization Initialize d pairwise independent hash functions hj : [n] → [w] with w buckets
each for j ∈ [d]. For each bucket b of each hash function j, store a counter Cj(b) initially set
to 0.

Building the data structure: For each element i of the stream, hash i using each hash function
and increment Cj(hj(i)) for all j ∈ [d].

1

Algorithm 1: CountMin
Initialize d independent pairwise independent hash functions hj : [n]→ [w].
Set counter Cj(b) = 0 for all j ∈ [d] and b ∈ [w].
while Stream S not empty do

if Insert(x) then
for j = 1 . . . d do

Cj(hj(x)) =+1
end

else if Frequency(i) then
return f̂x = minj∈[d]Cj(hj(x)).

end
end

Querying the data structure Given element i, return f̂i = minj∈[d]Cj(hj(i)).

3.1 Analysis

In this section we will show that the by choosing d and w in the right way, we can obtain the
following guarantees on the estimated values.

Theorem 1. The estimator f̂i has the following property: f̂i ≥ fi and with probability at least
1− δ, f̂i ≤ fi + εm, where m is the length of the stream.

To show this we first analyze f̂i wrt the parameters d and w. First we give a lower bound on f̂i.

Lemma 2. The estimator f̂i has the property f̂i ≥ fi.

Proof. Clearly for any i ∈ [n] and 1 ≤ j ≤ d, it holds that C(hj(i)) ≥ fi and hence f̂i ≥ fi.

We now give an upper bound on f̂i. This bound is probabilistic, i.e., it holds with a certain
probability, which depends on d—the number of hash functions in the CountMin sketch.

Lemma 3. With probability at least 1 −
(
1
2

)d, we have f̂i ≤ fi +
2
w ·m, where m is the length of

the stream.

Proof. Fix an element i ∈ [n] and let Zj = Cj(hj(i)) be the value of the counter in row j to
which i is hashed. Let b = hj(i) be the bucket that i hashes to in row j. We can compute the
expectation of the value Zj as follows:

E[Zj] = E

 ∑
s:hj(s)=b

fs

 = fi +
1

w

∑
s:s 6=i

fs ≤ fi +
m

w

since the sum of all frequencies is m (the number of elements in the stream), and each element
has probability 1/w of mapping to a particular bucket (pairwise independence of hj gives us
that Pr[hj(s) = b] ≤ 1/w).

We now want to bound the probability that Zj ≥ fi + 2
w ·m. We have

Pr

(
Zj ≥ fi +

2m

w

)
= Pr

(
Zj − fi ≥

2m

w

)
2

1 2 3 4 5 6 7 8 n

[1,2] [3,4] [5,6] [7,8] n-1,n

[1,4] [5,8] n-3,n

[1,8] [n-7,n]

[1,n]

[1,n/2] [n/2+1,n]

[1,n/4] [n/4+1,n/2] [n/2+1,3n/4] [3n/4+1,n]

[n-1,n]

Figure 1: Tree of dyadic intervals

Since the CountMin sketch only overestimates frequencies implying Zj − fi ≥ 0, we can use
Markov’s inequality to get

Pr

(
Zj − fi ≥

2m

w

)
≤ E[Zj − fi]

2mw
=

E[Zj]− fi
2mw

≤
(fi +

m
w)− fi
2mw

≤ 1

2
.

Since we select each hash function independently, we have that

Pr

(
f̂i ≥ fi +

2m

w

)
=
∏
j∈[d]

Pr

(
Zj ≥ fi +

2m

w

)
≤
(
1

2

)d
.

Setting w = 2
ε and d = lg 1

δ we get Pr
(
f̂i ≥ fi + εm

)
≤ δ. This concludes the proof of Theo-

rem 1.

Space and time The space usage of the CountMin sketch is O(dw) = O(2ε lg
1
δ) words, i.e.,

O(2ε lg
1
δ (lgm+ lg n) bits. The query and update time is O(d) = O(lg 1

δ).

4 Applications of CountMin Sketch

The CountMin sketch can be used to efficiently support the following queries:

• Range queries: "How many elements in the stream have value between a and b?

• Heavy hitters: listing all heavy hitters (elements with frequency at least m/k).

This can be done using CountMin sketches over dyadic intervals.

Dyadic intervals The dyadic intervals of [1, . . . ,m] are the set of intervals of the form [jm
2i

+
1, . . . , (j + 1) n

2i
] for all 0 ≤ i ≤ lgm and all 0 ≤ j ≤ 2i − 1. See Figure 1.

3

4.1 Range Queries

For each level of the tree in Figure 1 we store a separate CountMin sketch data structure. For
level j the jth CountMin sketch treats two elements that fall into the same interval in level j as
the same element. For all intervals i in the tree, let C(i) denote the value that the appropriate
CountMin sketch returns for i. Let the frequency of interval i denote the sum of the frequencies
over all elements in interval i.

Any range query can be reduced to at most 2 lg n dyadic range queries (see exercises), which
each can be reduced to a single point query (frequency query of an element). Each lement i is a
member of lg n different ranges, corresponding to nodes in the tree from the leaf corresponding
to i to the root. We update each of the lg n sketches whenever an element arrives in the stream.
Given a range query we compute the at most 2 lg n ranges covering our range query, and pose
that many frequency queries to our sketches, returning the sum of the queries as the estimate.

This gives us the following lemma.

Lemma 4. Let f[a,b] be the number of elements in the stream with value in the range [a, b], and let
f̂[a,b] be the value returned by our data structure. Then f[a,b] ≤ f̂[a,b] and with probability at least
1− δ,

f̂[a,b] ≤ f[a,b] + 2ε lgm .

Proof. That f[a,b] ≤ f̂[a,b] follows directly from Lemma 2. The expected additive error for each
estimator used to compute f̂[a,b] is m/w. By linearity of expectation the total expected error over
tje 2 lg n ranges is thus 2 lg n(m/w). Using the same Markov inequality argument as before, we
get that the probability that this additive error is more than 2εm lg n is less than 1/2. Thus the
probability that all of them are greater than this is at most δ.

In the exercises we will show how to scale the error to get a better bound on f̂[a,b].
The space for the data structure is the space for lg n CountMin sketches, i.e., O(lgnε lg 1

δ).
The query and update time is. The query and update time is O(d) = O(lg n lg 1

δ).

4.2 Heavy Hitters

Using dyadic intervals we can solve the heavy hitters problem in the turnstile model (where
updates are both positive and negative, with the restriction that count of any item is never less
than zero). There is a more simple solution using heaps in the cash register model (all updates
are positive).

4.2.1 Heavy hitters in the cash register model

We maintain a CountMin sketch, a min-heap and the number m of elements seen so far. When a
new element i arrives, we increment m by one, update the sketch, and perform a Frequency(i)
query to get the value of f̂i. If f̂i > m/k we insert i into the heap with value f̂i. If i is already
in the heap we delete it before we insert it with the new value. To keep the heap small we then
check if the minimum element in the heap has a key less than m/k (with the new updated m).
If this is the case we extract the minimum element from the heap. To return all heavy hitters
we run through the heap and return all elements with estimated frequency greater than m/k.
To ensure this we make a frequency query for each element in the heap.

4

Analysis Assume that we set ε = 1/2k. Assume for simplicity that the CountMin sketches
makes no large errors1, i.e., that f̂i ≤ fi + εm for all i. This implies that every element x with
f̂i ≥ m/k has true frequency fi at least m/k − εm = m

2k . There are at most 2k intervals with
frequency m/(2k) and thus the number of elements in the heap is no more than O(k).

The space is O(dw) = O(1ε lg
1
δ) = O(k lg 1

δ) words for the CountMin sketch and O(k) space
for the heap. Update time is O(1δ + lg k).

4.2.2 Heavy hitters in the turnstile model

As in the range queries we store a separate CountMin sketch data structure for each level of the
tree in Figure 1. For level j the jth CountMin sketch treats two elements that fall into the same
interval in level j as the same element. For all intervals i in the tree, let C(i) denote the value
that the appropriate CountMin sketch returns for i. Let the frequency of interval i denote the
sum of the frequencies over all elements in interval i.

To find the heavy hitters we traverse the tree from the root only traversing the children
whose intervals have estimated frequency at least m/k and return the leaves whose estimated
frequency is at least m/k. Since the frequency of an interval is at least that of its children and
the CountMin sketch overestimates the frequencies, we will reach all leaves with frequency at
least m/k.

Analysis Assume ε = 1
2k . There are lg n CountMin sketches (one for each level in the tree).

Thus the total space usage is O(1ε lg
(
1
δ

)
lg n) = O(k lg

(
1
δ

)
lg n) words. The update time is

O(log n · lg 1
δ).

Assume for simplicity that the CountMin sketches makes no large errors2, i.e., that f̂i ≤
fi + εm for all i. This implies that every element x with f̂i ≥ m/k has true frequency fi at least
m/k − εm = m

2k . For any given level, the sum over all frequencies in that level is m. Thus, in
any level, there are at most 2k intervals with frequency m/2k. Therefore, we only explore the
children of at most O(k) intervals in any given level, so the total number of intervals queried is
O(k log n). The total query time is O(k log n · lg 1

δ).

1For a version with a more precise analysis see [1].
2For a version with a more precise analysis see [1].

5

5 CountSketch

Algorithm 2: CountSketch
Initialize d independent hash functions hj : [n]→ [w].
Initialize d independent hash functions sj : [n]→ {±1}.
Set counter C[j, b] = 0 for all j ∈ [d] and b ∈ [w].
while Stream S not empty do

if Insert(x) then
for j = 1 . . . d do

C[j, hj(x)] =+ sj(i)
end

else if Frequency(i) then
f̂ij = C(hj(i)) · sj(i)
return f̃ij = medianj∈[d]f̂ij

end
end

References

[1] Cormode, G. and Muthukrishnan, S., 2005. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1), pp.58-75.

6

