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ABSTRACT
A locality sensitive hashing scheme is a distribution on a
family F of hash functions operating on a collection of ob-
jects, such that for two objects x, y,

Prh∈F [h(x) = h(y)] = sim(x, y),

where sim(x, y) ∈ [0, 1] is some similarity function defined
on the collection of objects. Such a scheme leads to a com-
pact representation of objects so that similarity of objects
can be estimated from their compact sketches, and also
leads to efficient algorithms for approximate nearest neigh-
bor search and clustering. Min-wise independent permu-
tations provide an elegant construction of such a locality
sensitive hashing scheme for a collection of subsets with the

set similarity measure sim(A,B) = |A∩B|
|A∪B| .

We show that rounding algorithms for LPs and SDPs used
in the context of approximation algorithms can be viewed
as locality sensitive hashing schemes for several interesting
collections of objects. Based on this insight, we construct
new locality sensitive hashing schemes for:

1. A collection of vectors with the distance between 
u
and 
v measured by θ(
u,
v)/π, where θ(
u,
v) is the an-
gle between 
u and 
v. This yields a sketching scheme
for estimating the cosine similarity measure between
two vectors, as well as a simple alternative to minwise
independent permutations for estimating set similar-
ity.

2. A collection of distributions on n points in a metric
space, with distance between distributions measured
by the Earth Mover Distance (EMD), (a popular dis-
tance measure in graphics and vision). Our hash func-
tions map distributions to points in the metric space
such that, for distributions P and Q,

EMD(P,Q) ≤ Eh∈F [d(h(P ), h(Q))]

≤ O(log n log log n) · EMD(P,Q).
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1. INTRODUCTION
The current information explosion has resulted in an in-

creasing number of applications that need to deal with large
volumes of data. While traditional algorithm analysis as-
sumes that the data fits in main memory, it is unreasonable
to make such assumptions when dealing with massive data
sets such as data from phone calls collected by phone com-
panies, multimedia data, web page repositories and so on.
This new setting has resulted in an increased interest in
algorithms that process the input data in restricted ways,
including sampling a few data points, making only a few
passes over the data, and constructing a succinct sketch of
the input which can then be efficiently processed.
There has been a lot of recent work on streaming algo-

rithms, i.e. algorithms that produce an output by mak-
ing one pass (or a few passes) over the data while using a
limited amount of storage space and time. To cite a few
examples, Alon et al [2] considered the problem of estimat-
ing frequency moments and Guha et al [25] considered the
problem of clustering points in a streaming fashion. Many
of these streaming algorithms need to represent important
aspects of the data they have seen so far in a small amount of
space; in other words they maintain a compact sketch of the
data that encapsulates the relevant properties of the data
set. Indeed, some of these techniques lead to sketching algo-
rithms – algorithms that produce a compact sketch of a data
set so that various measurements on the original data set
can be estimated by efficient computations on the compact
sketches. Building on the ideas of [2], Alon et al [1] give al-
gorithms for estimating join sizes. Gibbons and Matias [18]
give sketching algorithms producing so called synopsis data
structures for various problems including maintaining ap-
proximate histograms, hot lists and so on. Gilbert et al [19]
give algorithms to compute sketches for data streams so as
to estimate any linear projection of the data and use this to
get individual point and range estimates. Recently, Gilbert
et al [21] gave efficient algorithms for the dynamic mainte-
nance of histograms. Their algorithm processes a stream of
updates and maintains a small sketch of the data from which
the optimal histogram representation can be approximated
very quickly.
In this work, we focus on sketching algorithms for estimat-

ing similarity, i.e. the construction of functions that produce
succinct sketches of objects in a collection, such that the
similarity of objects can be estimated efficiently from their
sketches. Here, similarity sim(x, y) is a function that maps
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pairs of objects x, y to a number in [0, 1], measuring the
degree of similarity between x and y. sim(x, y) = 1 corre-
sponds to objects x, y that are identical while sim(x, y) = 0
corresponds to objects that are very different.
Broder et al [8, 5, 7, 6] introduced the notion of min-wise

independent permutations, a technique for constructing such
sketching functions for a collection of sets. The similarity
measure considered there was

sim(A,B) =
|A ∩B|
|A ∪B| .

We note that this is exactly the Jaccard coefficient of simi-
larity used in information retrieval.
The min-wise independent permutation scheme allows the

construction of a distribution on hash functions h : 2U → U
such that

Prh∈F [h(A) = h(B)] = sim(A,B).

Here F denotes the family of hash functions (with an asso-
ciated probability distribution) operating on subsets of the
universe U . By choosing say t hash functions h1, . . . ht from
this family, a set S could be represented by the hash vector
(h1(S), . . . ht(S)). Now, the similarity between two sets can
be estimated by counting the number of matching coordi-
nates in their corresponding hash vectors.1

The work of Broder et al was originally motivated by the
application of eliminating near-duplicate documents in the
Altavista index. Representing documents as sets of features
with similarity between sets determined as above, the hash-
ing technique provided a simple method for estimating sim-
ilarity of documents, thus allowing the original documents
to be discarded and reducing the input size significantly.
In fact, the minwise independent permutations hashing

scheme is a particular instance of a locality sensitive hashing
scheme introduced by Indyk and Motwani [31] in their work
on nearest neighbor search in high dimensions.

Definition 1. A locality sensitive hashing scheme is a
distribution on a family F of hash functions operating on a
collection of objects, such that for two objects x, y,

Prh∈F [h(x) = h(y)] = sim(x, y) (1)

Here sim(x, y) is some similarity function defined on the
collection of objects.

Given a hash function family F that satisfies (1), we will
say that F is a locality sensitive hash function family corre-
sponding to similarity function sim(x, y). Indyk and Mot-
wani showed that such a hashing scheme facilitates the con-
struction of efficient data structures for answering approxi-
mate nearest-neighbor queries on the collection of objects.
In particular, using the hashing scheme given by minwise

independent permutations results in efficient data structures
for set similarity queries and leads to efficient clustering al-
gorithms. This was exploited later in several experimental
papers: Cohen et al [14] for association-rule mining, Haveli-
wala et al [27] for clustering web documents, Chen et al [13]
for selectivity estimation of boolean queries, Chen et al [12]
for twig queries, and Gionis et al [22] for indexing set value

1One question left open in [7] was the issue of compact rep-
resentation of hash functions in this family; this was settled
by Indyk [28], who gave a construction of a small family of
minwise independent permutations.

attributes. All of this work used the hashing technique for
set similarity together with ideas from [31].
We note that the definition of locality sensitive hashing

used by [31] is slightly different, although in the same spirit
as our definition. Their definition involves parameters r1 >
r2 and p1 > p2. A family F is said to be (r1, r2, p1, p2)-
sensitive for a similarity measure sim(x, y) if Prh∈F [h(x) =
h(y)] ≥ p1 when sim(x, y) ≥ r1 and Prh∈F [h(x) = h(y)] ≤
p2 when sim(x, y) ≤ r2. Despite the difference in the pre-
cise definition, we chose to retain the name locality sensitive
hashing in this work since the two notions are essentially the
same. Hash functions with closely related properties were
investigated earlier by Linial and Sasson [34] and Indyk et
al [32].

1.1 Our Results
In this paper, we explore constructions of locality sensi-

tive hash functions for various other interesting similarity
functions. The utility of such hash function schemes (for
nearest neighbor queries and clustering) crucially depends
on the fact that the similarity estimation is based on a test
of equality of the hash function values. We make an interest-
ing connection between constructions of similarity preserv-
ing hash-functions and rounding procedures used in the de-
sign of approximation algorithms. We show that procedures
used for rounding fractional solutions from linear programs
and vector solutions to semidefinite programs can be used
to derive similarity preserving hash functions for interesting
classes of similarity functions.
In Section 2, we prove some necessary conditions on sim-

ilarity measures sim(x, y) for the existence of locality sensi-
tive hash functions satisfying (1). Using this, we show that
such locality sensitive hash functions do not exist for certain
commonly used similarity measures in information retrieval,
the Dice coefficient and the Overlap coefficient.
In seminal work, Goemans and Williamson [24] intro-

duced semidefinite programming relaxations as a tool for
approximation algorithms. They used the random hyper-
plane rounding technique to round vector solutions for the
MAX-CUT problem. We will see in Section 3 that the ran-
dom hyperplane technique naturally gives a family of hash
functions F for vectors such that

Prh∈F [h(
u) = h(
v)] = 1− θ(
u,
v)

π
.

Here θ(
u,
v) refers to the angle between vectors 
u and 
v.
Note that the function 1 − θ

π
is closely related to the func-

tion cos(θ). (In fact it is always within a factor 0.878 from it.
Moreover, cos(θ) can be estimated from an estimate of θ.)
Thus this similarity function is very closely related to the
cosine similarity measure, commonly used in information
retrieval. (In fact, Indyk and Motwani [31] describe how
the set similarity measure can be adapted to measure dot
product between binary vectors in d-dimensional Hamming
space. Their approach breaks up the data set into O(log d)
groups, each consisting of approximately the same weight.
Our approach, based on estimating the angle between vec-
tors is more direct and is also more general since it applies
to general vectors.) We also note that the cosine between
vectors can be estimated from known techniques based on
random projections [2, 1, 20]. However, the advantage of a
locality sensitive hashing based scheme is that this directly
yields techniques for nearest neighbor search for the cosine
similarity measure.
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An attractive feature of the hash functions obtained from
the random hyperplane method is that the output is a single
bit; thus the output of t hash functions can be concatenated
very easily to produce a t-bit vector.2 Estimating similarity
between vectors amounts to measuring the Hamming dis-
tance between the corresponding t-bit hash vectors. We can
represent sets by their characteristic vectors and use this
locality sensitive hashing scheme for measuring similarity
between sets. This yields a slightly different similarity mea-
sure for sets, one that is linearly proportional to the angle
between their characteristic vectors.
In Section 4, we present a locality sensitive hashing scheme

for a certain metric on distributions on points, called the
Earth Mover Distance. We are given a set of points L =
{l1, . . . ln}, with a distance function d(i, j) defined on them.
A probability distribution P (X) (or distribution for short) is
a set of weights p1, . . . pn on the points such that pi ≥ 0 andP

pi = 1. (We will often refer to distribution P (X) as sim-
ply P , implicitly referring to an underlying set X of points.)
The Earth Mover Distance EMD(P,Q) between two dis-
tributions P and Q is defined to be the cost of the min
cost matching that transforms one distribution to another.
(Imagine each distribution as placing a certain amount of
earth on each point. EMD(P,Q) measures the minimum
amount of work that must be done in transforming one dis-
tribution to the other.) This is a popular metric for images
and is used for image similarity, navigating image databases
and so on [37, 38, 39, 40, 36, 15, 16, 41, 42]. The idea
is to represent an image as a distribution on features with
an underlying distance metric on features (e.g. colors in a
color spectrum). Since the earth mover distance is expensive
to compute (requiring a solution to a minimum transporta-
tion problem), applications typically use an approximation
of the earth mover distance. (e.g. representing distributions
by their centroids).
We construct a hash function family for estimating the

earth mover distance. Our family is based on rounding al-
gorithms for LP relaxations for the problem of classification
with pairwise relationships studied by Kleinberg and Tar-
dos [33], and further studied by Calinescu et al [10] and
Chekuri et al [11]. Combining a new LP formulation de-
scribed by Chekuri et al together with a rounding technique
of Kleinberg and Tardos, we show a construction of a hash
function family which approximates the earth mover dis-
tance to a factor of O(log n log log n). Each hash function in
this family maps a distribution on points L = {l1, . . . , ln}
to some point li in the set. For two distributions P (X) and
Q(X) on the set of points, our family of hash functions F
satisfies the property that:

EMD(P,Q) ≤ Eh∈F [d(h(P ), h(Q))]

≤ O(log n log log n) · EMD(P,Q).

We also show an interesting fact about a rounding al-
gorithm in Kleinberg and Tardos [33] applying to the case
where the underlying metric on points is a uniform met-
ric. In this case, we show that their rounding algorithm can

2In Section 2, we will show that we can convert any locality
sensitive hashing scheme to one that maps objects to {0, 1}
with a slight change in similarity measure. However, the
modified hash functions convey less information, e.g. the
collision probability for the modified hash function family is
at least 1/2 even for a pair of objects with original similarity
0.

be viewed as a generalization of min-wise independent per-
mutations extended to a continuous setting. Their rounding
procedure yields a locality sensitive hash function for vectors
whose coordinates are all non-negative. Given two vectors


a = (a1, . . . an) and 
b = (b1, . . . bn), the similarity function
is

sim(
a,
b) =

P
imin(ai, bi)P
imax(ai, bi)

.

(Note that when 
a and 
b are the characteristic vectors for
sets A and B, this expression reduces to the set similarity
measure for min-wise independent permutations.)
Applications of locality sensitive hash functions to solving

nearest neighbor queries typically reduce the problem to the
Hamming space. Indyk and Motwani [31] give a data struc-
ture that solves the approximate nearest neighbor problem
on the Hamming space. Their construction is a reduction to
the so called PLEB (Point Location in Equal Balls) problem,
followed by a hashing technique concatenating the values of
several locality sensitive hash functions. We give a simple
technique that achieves the same performance as the Indyk
Motwani result in Section 5. The basic idea is as follows:
Given bit vectors consisting of d bits each, we choose a num-
ber of random permutations of the bits. For each random
permutation σ, we maintain a sorted order of the bit vectors,
in lexicographic order of the bits permuted by σ. To find a
nearest neighbor for a query bit vector q we do the follow-
ing: For each permutation σ, we perform a binary search on
the sorted order corresponding to σ to locate the bit vectors
closest to q (in the lexicographic order obtained by bits per-
muted by σ). Further, we search in each of the sorted orders
proceeding upwards and downwards from the location of q,
according to a certain rule. Of all the bit vectors examined,
we return the one that has the smallest Hamming distance
to the query vector. The performance bounds we can prove
for this simple scheme are identical to that proved by Indyk
and Motwani for their scheme.

2. EXISTENCE OF LOCALITY SENSITIVE
HASH FUNCTIONS

In this section, we discuss certain necessary properties for
the existence of locality sensitive hash function families for
given similarity measures.

Lemma 1. For any similarity function sim(x, y) that ad-
mits a locality sensitive hash function family as defined in
(1), the distance function 1− sim(x, y) satisfies triangle in-
equality.

Proof. Suppose there exists a locality sensitive hash func-
tion family such that

Prh∈F [h(x) = h(y)] = sim(x, y).

Then,

1− sim(x, y) = Prh∈F [h(x) 
= h(y)].

Let ∆h(x, y) be an indicator variable for the event h(x) 
=
h(y). We claim that ∆h(x, y) satisfies the triangle inequality,
i.e.

∆h(x, y) + ∆h(y, z) ≥ ∆h(x, z).
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Since ∆h() takes values in the set {0, 1}, the only case
when the above inequality could be violated would be when
∆h(x, y) = ∆h(y, z) = 0. But in this case h(x) = h(y) and
h(y) = h(z). Thus, h(x) = h(z) implying that ∆h(x, z) = 0
and the inequality is satisfied. This proves the claim. Now,

1− sim(x, y) = Eh∈F [∆h(x, y)]

Since ∆h(x, y) satisfies the triangle inequality, Eh∈F [∆h(x, y)]
must also satisfy the triangle inequality. This proves the
lemma.

This gives a very simple proof of the fact that for the

set similarity measure sim(A,B) = |A∩B|
|A∪B| , 1 − sim(A,B)

satisfies the triangle inequality. This follows from Lemma 1
and the fact that a set similarity measure admits a locality
sensitive hash function family, namely that given by minwise
independent permutations.
One could ask the question whether locality sensitive hash

functions satisfying the definition (1) exist for other com-
monly used set similarity measures in information retrieval.
For example, Dice’s coefficient is defined as

simDice
(A,B) =

|A ∩B|
1
2
(|A|+ |B|)

The Overlap coefficient is defined as

simOvl
(A,B) =

|A ∩B|
min(|A|, |B|)

We can use Lemma 1 to show that there is no such local-
ity sensitive hash function family for Dice’s coefficient and
the Overlap measure by showing that the corresponding dis-
tance function does not satisfy triangle inequality.
Consider the sets A = {a}, B = {b}, C = {a, b}. Then,

simDice
(A,C) =

2

3
, simDice

(C,B) =
2

3
,

simDice
(A,B) = 0

1− simDice
(A,C) + 1− simDice

(C,B)

< 1− simDice
(A,B)

Similarly, the values for the Overlap measure are as follows:

simOvl
(A,C) = 1, simOvl

(C,B) = 1, simOvl
(A,B) = 0

1− simOvl
(A,C) + 1− simOvl

(C,B) < 1− simOvl
(A,B)

This shows that there is no locality sensitive hash function
family corresponding to Dice’s coefficient and the Overlap
measure.
It is often convenient to have a hash function family that

maps objects to {0, 1}. In that case, the output of t different
hash functions can simply be concatenated to obtain a t-bit
hash value for an object. In fact, we can always obtain such
a binary hash function family with a slight change in the
similarity measure. A similar result was used and proved by
Gionis et al [22]. We include a proof for completeness.

Lemma 2. Given a locality sensitive hash function family
F corresponding to a similarity function sim(x, y), we can
obtain a locality sensitive hash function family F ′ that maps
objects to {0, 1} and corresponds to the similarity function
1+sim(x,y)

2
.

Proof. Suppose we have a hash function family such
that

Prh∈F [h(x) = h(y)] = sim(x, y).

Let B be a pairwise independent family of hash functions
that operate on the domain of the functions in F and map el-
ements in the domain to {0, 1}. Then Prb∈B[b(u) = b(v)] =
1/2 if u 
= v and Prb∈B[b(u) = b(v)] = 1 if u = v. Consider
the hash function family obtained by composing a hash func-
tion from F with one from B. This maps objects to {0, 1}
and we claim that it has the required properties.

Prh∈F,b∈B[b(h(x)) = b(h(y))] =
1 + sim(x, y)

2

With probability sim(x, y), h(x) = h(y) and hence b(h(x) =
b(h(y)). With probability 1− sim(x, y), h(x) 
= h(y) and in
this case, Prb∈B[b(h(x) = b(h(y))] = 1

2
. Thus,

Pr[b(h(x)) = b(h(y))] = sim(x, y) + (1− sim(x, y))/2

= (1 + sim(x, y))/2.

This can be used to show a stronger condition for the
existence of a locality sensitive hash function family.

Lemma 3. For any similarity function sim(x, y) that ad-
mits a locality sensitive hash function family as defined in
(1), the distance function 1− sim(x, y) is isometrically em-
beddable in the Hamming cube.

Proof. Firstly, we apply Lemma 2 to construct a binary
locality sensitive hash function family corresponding to sim-
ilarity function sim′(x, y) = (1 + sim(x, y))/2. Note that
such a binary hash function family gives an embedding of
objects into the Hamming cube (obtained by concatenating
the values of all the hash functions in the family). For ob-
ject x, let v(x) be the element in the Hamming cube x is
mapped to. 1− sim′(x, y) is simply the fraction of bits that
do not agree in v(x) and v(y), which is proportional to the
Hamming distance between v(x) and v(y). Thus this em-
bedding is an isometric embedding of the distance function
1− sim′(x, y) in the Hamming cube. But

1− sim′(x, y) = 1− (1 + sim(x, y))/2 = (1− sim(x, y))/2.

This implies that 1− sim(x, y) can be isometrically embed-
ded in the Hamming cube.

We note that Lemma 3 has a weak converse, i.e. for a
similarity measure sim(x, y) any isometric embedding of the
distance function 1−sim(x, y) in the Hamming cube yields a
locality sensitive hash function family corresponding to the
similarity measure (α + sim(x, y))/(α+ 1) for some α > 0.

3. RANDOM HYPERPLANE BASED HASH
FUNCTIONS FOR VECTORS

Given a collection of vectors in Rd, we consider the family
of hash functions defined as follows: We choose a random
vector 
r from the d-dimensional Gaussian distribution (i.e.
each coordinate is drawn the 1-dimensional Gaussian distri-
bution). Corresponding to this vector 
r, we define a hash
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function h�r as follows:

h�r(
u) =

�
1 if 
r · 
u ≥ 0
0 if 
r · 
u < 0

Then for vectors 
u and 
v,

Pr[h�r(
u) = h�r(
v)] = 1− θ(
u,
v)

π
.

This was used by Goemans and Williamson [24] in their
rounding scheme for the semidefinite programming relax-
ation of MAX-CUT.
Picking a random hyperplane amounts to choosing a nor-

mally distributed random variable for each dimension. Thus
even representing a hash function in this family could require
a large number of random bits. However, for n vectors, the
hash functions can be chosen by picking O(log2 n) random
bits, i.e. we can restrict the random hyperplanes to be in

a family of size 2O(log2 n). This follows from the techniques
in Indyk [30] and Engebretsen et al [17], which in turn use
Nisan’s pseudorandom number generator for space bounded
computations [35]. We omit the details since they are similar
to those in [30, 17].
Using this random hyperplane based hash function, we ob-

tain a hash function family for set similarity, for a slightly
different measure of similarity of sets. Suppose sets are rep-
resented by their characteristic vectors. Then, applying the
above scheme gives a locality sensitive hashing scheme where

Pr[h(A) = h(B)] = 1− θ

π
, where

θ = cos−1

 
|A ∩B|p|A| · |B|

!

Also, this hash function family facilitates easy incorporation
of element weights in the similarity calculation, since the
values of the coordinates of the characteristic vectors could
be real valued element weights. Later, in Section 4.1 we will
present another technique to define and estimate similarity
of weighted sets.

4. THE EARTH MOVER DISTANCE
Consider a set of points L = {l1, . . . ln} with a distance

function d(i, j) (assumed to be a metric). A distribution
P (L) on L is a collection of non-negative weights (p1, . . . pn)
for points in X such that

P
pi = 1. The distance between

two distributions P (L) and Q(L) is defined to be the optimal
cost of the following minimum transportation problem:

min
X
i,j

fi,j · d(i, j) (2)

∀ i
X
j

fi,j = pi (3)

∀ j
X
i

fi,j = qj (4)

∀ i, j fi,j ≥ 0 (5)

Note that we define a somewhat restricted form of the
Earth Mover Distance. The general definition does not as-
sume that the sum of the weights is identical for distribu-
tions P (L) and Q(L). This is useful for example in matching
a small image to a portion of a larger image.

We will construct a hash function family for estimating
the Earth Mover Distance based on rounding algorithms for
the problem of classification with pairwise relationships, in-
troduced by Kleinberg and Tardos [33]. (A closely related
problem was also studied by Broder et al [9]). In designing
hash functions to estimate the Earth Mover Distance, we
will relax the definition of locality sensitive hashing (1) in
three ways.

1. Firstly, the quantity we are trying to estimate is a
distance measure, not a similarity measure in [0, 1].

2. Secondly, we will allow the hash functions to map ob-
jects to points in a metric space and measure

E[d(h(x), h(y))]. (A locality sensitive hash function
for a similarity measure sim(x, y) can be viewed as
a scheme to estimate the distance 1 − sim(x, y) by
Prh∈F [h(x) 
= h(y)]. This is equivalent to having a
uniform metric on the hash values).

3. Thirdly, our estimator for the Earth Mover Distance
will not be an unbiased estimator, i.e. our estimate
will approximate the Earth Mover Distance to within
a small factor.

We now describe the problem of classification with pair-
wise relationships. Given a collection of objects V and labels
L = {l1, . . . , ln}, the goal is to assign labels to objects. The
cost of assigning label l to object u ∈ V is c(u, l). Certain
pairs of objects (u, v) are related; such pairs form the edges
of a graph over V . Each edge e = (u, v) is associated with a
non-negative weight we. For edge e = (u, v), if u is assigned
label h(u) and v is assigned label h(v), then the cost paid is
wed(h(u), h(v)).
The problem is to come up with an assignment of labels

h : V → L, so as to minimize the cost of the labeling h given
by X

u∈V
c(v, h(v)) +

X
e=(u,v)∈E

wed(h(u), h(v))

The approximation algorithms for this problem use an LP
to assign, for every u ∈ V , a probability distribution over
labels in L (i.e. a set of non-negative weights that sum up
to 1). Given a distribution P over labels in L, the round-
ing algorithm of Kleinberg and Tardos gave a randomized
procedure for assigning label h(P ) to P with the following
properties:

1. Given distribution P (L) = (p1, . . . pn),

Pr[h(P ) = li] = pi. (6)

2. Suppose P and Q are probability distributions over L.

E[d(h(P ), h(Q))] ≤ O(log n log log n)EMD(P,Q) (7)

We note that the second property (7) is not immediately
obvious from [33], since they do not describe LP relaxations
for general metrics. Their LP relaxations are defined for
Hierarchically well Separated Trees (HSTs). They convert
a general metric to such an HST using Bartal’s results [3,
4] on probabilistic approximation of metric spaces via tree
metrics. However, it follows from combining ideas in [33]
with those in Chekuri et al [11]. Chekuri et al do in fact
give an LP relaxation for general metrics. The LP relaxation
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does indeed produce distributions over labels for every ob-
ject u ∈ V . The fractional distance between two labelings is
expressed as the min cost transshipment between P and Q,
which is identical to the Earth Mover Distance EMD(P,Q).
Now, this fractional solution can be used in the rounding al-
gorithm developed by Kleinberg and Tardos to obtain the
second property (7) claimed above. In fact, Chekuri et al
use this fact to claim that the gap of their LP relaxation is
at most O(log n log log n) (Theorem 5.1 in [11]).
We elaborate some more on why the property (7) holds.

Kleinberg and Tardos first (probabilistically) approximate
the metric on L by an HST using [3, 4]. This is a tree
with all vertices in the original metric at the leaves. The
pairwise distance between any two vertices does no decrease
and all pairwise distances are increased by a factor of at
most O(log n log log n) (in expectation). For this tree met-
ric, they use an LP formulation which can be described as
follows. Suppose we have a rooted tree. For subtree T , let
/T denote the length of the edge that T hangs off of, i.e. the
first edge on the path from T to the root. Further, for dis-
tribution P on the vertices of the original metric, let P (T )
denote the total probability mass that P assigns to leaves in
T ; Q(T ) is similarly defined. The distance between distribu-
tions P and Q is measured by

P
T /T |P (T )− Q(T )|, where

the summation is computed over all subtrees T . The Klein-
berg Tardos rounding scheme ensures that E[d(h(P ), h(Q))]
is within a constant factor of

P
T /T |P (T )−Q(T )|.

Suppose instead, we measured the distance between distri-
butions by EMD(P,Q), defined on the original metric. By
probabilistically approximating the original metric by a tree
metric T ′, the expected value of the distance EMDT ′(P,Q)
(on the tree metric T ′) is at most a factor ofO(log n log log n)
times EMD(P,Q). This follows since all distances increase
by O(log n log log n) in expectation. Now note that the tree
distance measure used by Kleinberg and Tardos

P
T /T |P (T )−

Q(T )| is a lower bound on (and in fact exactly equal to)
EMDT ′(P,Q). To see that this is a lower bound, note that
in the min cost transportation between P and Q on T ′,
the flow on the edge leading upwards from subtree T must
be at least |P (T ) − Q(T )|. Since the rounding scheme en-
sures that E[d(h(P ), h(Q))] is within a constant factor ofP

T /T |P (T )− Q(T )|, we have that

E[d(h(P ), h(Q))] ≤ O(1)EMDT ′(P,Q)

≤ O(log n log log n)EMD(P,Q)

where the expectation is over the random choice of the HST
and the random choices made by the rounding procedure.

Theorem 1. The Kleinberg Tardos rounding scheme yields
a locality sensitive hashing scheme such that

EMD(P,Q) ≤ E[d(h(P ), h(Q))]

≤ O(log n log log n)EMD(P,Q).

Proof. The upper bound on E[d(h(P ), h(Q))] follows di-
rectly from the second property (7) of the rounding scheme
stated above.
We show that the lower bound follows from the first prop-

erty (6). Let yi,j be the joint probability that h(P ) = li
and h(Q) = lj . Note that

P
j yi,j = pi, since this is sim-

ply the probability that h(P ) = li. Similarly
P

i yi,j = qj ,
since this is simply the probability that h(Q) = lj . Now, if
h(P ) = li and h(Q) = lj , then d(h(P )h(Q)) = d(i, j). Hence

E[d(f(P ), f(Q))] =
P

i,j yi,j · d(i, j). Let us write down the
expected cost and the constraints on yi,j .

E[d(h(P ), h(Q))] =
X
i,j

yi,j · d(i, j)

∀ i
X
j

yi,j = pi

∀ j
X
i

yi,j = qj

∀ i, j yi,j ≥ 0

Comparing this with the LP for EMD(P,Q), we see that
the values of fi,j = yi,j is a feasible solution to the LP (2) to
(5) and E[d(h(P ), h(Q))] is exactly the value of this solution.
Since EMD(P,Q) is the minimum value of a feasible solu-
tion, it follows that EMD(P,Q) ≤ E[d(h(P ), h(Q))].

Calinescu et al [10] study a variant of the classification
problem with pairwise relationships called the 0-extension
problem. This is the version without assignment costs where
some objects are assigned labels apriori and this labeling
must be extended to the other objects (a generalization of
multiway cut). For this problem, they design a rounding
scheme to get a O(log n) approximation. Again, their tech-
nique does not explicitly use an LP that gives probability
distributions on labels. However in hindsight, their round-
ing scheme can be interpreted as a randomized procedure
for assigning labels to distributions such that

E[d(h(P ), h(Q))] ≤ O(log n)EMD(P,Q).

Thus their rounding scheme gives a tighter guarantee than
(7). However, they do not ensure (6). Thus the previous
proof showing that EMD(P,Q) ≤ E[d(h(P ), h(Q))] does
not apply. In fact one can construct examples such that
EMD(P,Q) > 0, yet E[d(h(P ), h(Q))] = 0. Hence, the
resulting hash function family provides an upper bound on
EMD(P,Q) within a factor O(log n) but does not provide
a good lower bound.
We mention that the hashing scheme described provides

an approximation to the Earth Mover Distance where the
quality of the approximation is exactly the factor by which
the underlying metric can be probabilistically approximated
by HSTs. In particular, if the underlying metric itself is
an HST, this yields an estimate within a constant factor.
This could have applications in compactly representing dis-
tributions over hierarchical classes. For example, documents
can be assigned a probability distribution over classes in
the Open Directory Project (ODP) hierarchy. This hier-
archy could be thought of as an HST and documents can
be mapped to distributions over this HST. The distance be-
tween two distributions can be measured by the Earth Mover
Distance. In this case, the hashing scheme described gives a
way to estimate this distance measure to within a constant
factor.

4.1 Weighted Sets
We show that the Kleinberg Tardos [33] rounding scheme

for the case of the uniform metric actually is an extension
of min-wise independent permutations to the weighted case.
First we recall the hashing scheme given by min-wise in-

dependent permutations. Given a universe U , consider a
random permutation π of U . Assume that the elements of
U are totally ordered. Given a subset A ⊆ U , the hash
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function hπ is defined as follows:

hπ(A) = min{π(A)}
Then the property satisfied by this hash function family is
that

Prπ[hπ(A) = hπ(B)] =
|A ∩B|
|A ∪B|

We now review the Kleinberg Tardos rounding scheme for
the uniform metric: Firstly, imagine that we pick an infinite
sequence {(it, αt)}∞t=1 where for each t, it is picked uniformly
and at random in {1, . . . n} and αt is picked uniformly and
at random in [0, 1]. Given a distribution P = (p1, . . . , pn),
the assignment of labels is done in phases. In the ith phase,
we check whether αi ≤ pit . If this is the case and P has not
been assigned a label yet, it is assigned label it.
Now, we can think of these distributions as sets in R2 (see

Figure 1).

2 3 4 5 6 70 1 8

Figure 1: Viewing a distribution as a continuous set.

The set S(P ) corresponding to distribution P consists of
the union of the rectangles [i−1, i]× [0, pi]. The elements of
the universe are [i− 1, i]× α. [i− 1, i]× α belongs to S(P )
iff α ≤ pi. The notion of cardinality of union and intersec-
tion of sets is replaced by the area of the intersection and
union of two such sets in R2. Note that the Kleinberg Tar-
dos rounding scheme can be interpreted as constructing a
permutation of the universe and assigning to a distribution
P , the value i such that (i, α) is the minimum in the per-
mutation amongst all elements contained in S(P ). Suppose
instead, we assign to P , the element (i, α) which is the min-
imum in the permutation of S(P ). Let h be a hash function
derived from this scheme (a slight modification of the one in
[33]). Then,

Pr[h(P ) = h(Q)] =
|S(P ) ∩ S(Q)|
|S(P ) ∪ S(Q)| =

P
imin(pi, qi)P
imax(pi, qi)

(8)

For the Kleinberg Tardos rounding scheme, the probabil-
ity of collision is at least the probability of collision for the
modified scheme (since two objects hashed to (i, α1) and
(i, α2) respectively in the modified scheme would be both
mapped to i in the original scheme). Hence

PrKT [h(P ) = h(Q)] ≥
P

imin(pi, qi)P
imax(pi, qi)

PrKT [h(P ) 
= h(Q)] ≤ 1−
P

imin(pi, qi)P
imax(pi, qi)

=

P
i |pi − qi|P

imax(pi, qi)
≤
X
i

|pi − qi|

The last inequality follows from the fact that
P

pi =
P

qi =
1 in the Kleinberg Tardos setting. This was exactly the
property used in [33] to obtain a 2-approximation for the
uniform metric case.

Note that the hashing scheme given by (8) is a generaliza-
tion of min-wise independent permutations to the weighted
setting where elements in sets are associated with weights
∈ [0, 1]. Min-wise independent permutations are a special
case of this scheme when the weights are {0, 1}. This scheme
could be useful in a setting where a weighted set similar-
ity notion is desired. We note that the original min-wise
independent permutations can be used in the setting of in-
teger weights by simply duplicating elements according to
their weight. The present scheme would work for any non-
negative real weights.

5. APPROXIMATE NEAREST NEIGHBOR
SEARCH IN HAMMING SPACE.

Applications of locality sensitive hash functions to solving
nearest neighbor queries typically reduce the problem to the
Hamming space. Indyk and Motwani [31] give a data struc-
ture that solves the approximate nearest neighbor problem
on the Hamming space Hd. Their construction is a reduc-
tion to the so called PLEB (Point Location in Equal Balls)
problem, followed by a hashing technique concatenating the
values of several locality sensitive hash functions.

Theorem 2 ([31]). For any ε > 0, there exists an al-

gorithm for ε-PLEB in Hd using O(dn + n1+1/(1+ε)) space

and O(n1/(1+ε)) hash function evaluations for each query.

We give a simple technique that achieves the same perfor-
mance as the Indyk Motwani result:
Given bit vectors consisting of d bits each, we choose

N = O(n1/(1+ε)) random permutations of the bits. For each
random permutation σ, we maintain a sorted order Oσ of
the bit vectors, in lexicographic order of the bits permuted
by σ. Given a query bit vector q, we find the approximate
nearest neighbor by doing the following: For each permu-
tation σ, we perform a binary search on Oσ to locate the
two bit vectors closest to q (in the lexicographic order ob-
tained by bits permuted by σ). We now search in each of
the sorted orders Oσ examining elements above and below
the position returned by the binary search in order of the
length of the longest prefix that matches q. This can be done
by maintaining two pointers for each sorted order Oσ (one
moves up and the other down). At each step we move one of
the pointers up or down corresponding to the element with
the longest matching prefix. (Here the length of the longest
matching prefix in Oσ is computed relative to q with its bits
permuted by σ). We examine 2N = O(n1/(1+ε)) bit vec-
tors in this way. Of all the bit vectors examined, we return
the one that has the smallest Hamming distance to q. The
performance bounds we can prove for this simple scheme
are identical to that proved by Indyk and Motwani for their
scheme. An advantage of this scheme is that we do not need
a reduction to many instances of PLEB for different values
of radius r, i.e. we solve the nearest neighbor problem si-
multaneously for all values of radius r using a single data
structure.
We outline the main ideas of the analysis. In fact, the

proof follows along similar lines to the proofs of Theorem
5 and Corollary 3 in [31]. Suppose the nearest neighbor of
q is at a Hamming distance of r from q. Set p1 = 1 − r

d
,

p2 = 1 − r(1+ε)
d

and k = log1/p2
n. Let ρ = ln 1/p1

ln 1/p2
. Then

nρ = O(n1/(1+ε)). We can show that with constant proba-

bility, from amongst N = O(n1/(1+ε)) permutations, there
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exists a permutation such that the nearest neighbor agrees
with p on the first k coordinates in σ. Further, over all L
permutations, the number of bit vectors that are at Ham-
ming distance of more than r(1+ ε) from q and agree on the
first k coordinates is at most 2N with constant probability.
This implies that for this permutation σ, one of the 2L bit
vectors near q in the ordering Oσ and examined by the algo-
rithm will be a (1 + ε)-approximate nearest neighbor. The
probability calculations are similar to those in [31], and we
only sketch the main ideas.
For any point q′ at distance at least r(1 + ε) from q, the

probability that a random coordinate agrees with q is at
most p2. Thus the probability that the first k coordinates
agree is at most pk2 = 1

n
. For the N permutations, the

expected number of such points that agree in the first k
coordinates is at most N . The probability that this num-
ber is ≤ 2N is > 1/2. Further, for a random permutation
σ, the probability that the nearest neighbor agrees in k co-
ordinates is pk1 = n−ρ. Hence the probability that there
exists one permutation amongst the N = nρ permutations
where the nearest neighbor agrees in k coordinates is at least
1 − (1 − n−ρ)n

ρ

> 1/2. This establishes the correctness of
the procedure.
As we stated earlier, a nice property of this data structure

is that it automatically adjusts to the correct distance r
to the nearest neighbor, i.e. we do not need to maintain
separate data structures for different values of r.

6. CONCLUSIONS
We have demonstrated an interesting relationship between

rounding algorithms used for rounding fractional solutions
of LPs and vector solutions of SDPs on the one hand, and
the construction of locality sensitive hash functions for in-
teresting classes of objects, on the other.
Rounding algorithms yield new constructions of locality

sensitive hash functions that were not known previously.
Conversely (at least in hindsight), locality sensitive hash
functions lead to rounding algorithms (as in the case of min-
wise independent permutations and the uniform metric case
in Kleinberg and Tardos [33]).
An interesting direction to pursue would be to investigate

the construction of sketching functions that allow one to es-
timate information theoretic measures of distance between
distributions such as the KL-divergence, commonly used in
statistical learning theory. Since the KL-divergence is nei-
ther symmetric nor satisfies triangle inequality, new ideas
would be required in order to design a sketch function to
approximate it. Such a sketch function, if one exists, would
be a very valuable tool in compactly representing complex
distributions.
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