
Weekplan: Approximate Distance Oracles

Philip Bille Inge Li Gørtz Eva Rotenberg∗

References and Reading

[1] Approximate distance oracles, M. Thorup, U. Zwick, Journal of the ACM,
2005.

[2] Undirected single-source shortest paths with positive integer weights in
linear time, M. Thorup, Journal of the ACM, 1999.

[3] Approximate Distance Oracles with Improved Preprocessing Time, C.
Wulff-Nilsen, SODA, 2012

[4] Extremal problems in graph theory, P. Erdős, Proc. Symposium on Graph
theory, Smolenice, 1963

[5] Faster Algorithms for All-Pairs Approximate Shortest Paths in Undirected
Graphs, S. Baswana and T. Kavitha, SIAM J. Computing, 2010

This weekplan/these lecture notes contain exercises that support an understand-
ing of [1] excluding sections 3.5, 3.6, 4.4, and 5.

Sections 1, 2, and 4 go through the selected material from [1], and Section 3
contains conventional exercises.

1 Approximate Distance Oracle

Given a weighted undirected graph, G, we want a data structure that answers
d(u, v) = distance(u, v) for vertices u, v. Here, d(u, v) is the length of the
shortest path connecting u and v. (Throughout the text, weighted graphs have
strictly positive edge weights.)

Assume that all edge-weights are strictly positive.

1 Exercise. Consider trivial solutions.

• With no preprocessing of the graph. What is the query-time?

• Can this be done in O(n2) space and O(1) query time? What is your
preprocessing time?

∗I would like to thank Christian Wulff-Nilsen for his suggestions to exercises.

1

2 Exercise. Convince yourself that the shortest-path-distance indeed is a
metric on the set of vertices. Remember that edge-weights are strictly positive.

• d(u, v) = 0⇔ u = v

• d(u, v) = d(v, u)

• d(u,w) ≤ d(u, v) + d(v, w)

Lower bound Follows from Erdős’ Girth Conjecture: Ω(n2) space is neces-
sary in order to output exact distances in O(1) time.

Approximation A data structure that outputs an estimated distance be-
tween d(u, v) and S · d(u, v) has a stretch of S.

Devastating lower bound Follows from Erdős’ Girth Conjecture: Ω(n2)
space is necessary for any stretch < 3 for O(1) query-time.

Goal Let’s just aim for any constant stretch and o(n2) space.

×
×

×

× ×

×

××

×

×

×

×

×

×
×

×

×
×

×

×

×
×

×

p(v)

v

Figure 1: The vertex v knows its distance to all sampled vertices, and to the
nonsampled vertices that are closer than p(v).

Idea Sample each point independently with some probability p to be deter-
mined later. Store the following: (See Figure 1)

1. All distances involving at least one sampled point

2. For each vertex v, store an identifier of the closest sampled vertex p(v).
(If v is sampled, p(v) = v.)

3. For each vertex v, store distances to all vertices u that are closer than
p(v). That is, we store d(v, u) for u ∈ B0(v) where B0(v) := {u ∈ V |
d(v, u) < d(v, p(v))}.

3 Note: For each v, if the distances involving v are denoted B(v), we can
store them using (expected) O(|B(v)|) space and constant look-up time.

2

4 Exercise Given the information above, devise any algorithm that takes a
pair of vertices u, v and outputs an estimate of their distance.

• What is the query-time of your algorithm? What is its stretch?

• Can you make an algorithm with O(1) query-time and a constant stretch?
What is its stretch?

5 Exercise What is the space consumption?

1. What is the expected total space consumption of storing all distances
involving sampled vertices?

• How many sampled vertices are there? In expectation. As a function
of p.

• How many distances do we store for each sampled vertex?

2. What is the space consumption of storing p(v) for each vertex v?

3. What is the expected total space consumption for storing, for each vertex
v, distances to all vertices u that are closer than p(v)?

(Hint: For each vertex v, we want to calculate the expected size of B0(v).

Consider the vertices in decreasing order starting form v. That is, w0, w1, w2, . . .
with w0 = v. Now, the next vertex only belongs to B0(v) if all the previous
were not sampled.

Use that if some experiment succeeds with probability 1/K, the expected
number of independent tries until one gets a success is K.)

• Which value for p gives the best trade-off?

Theorem 1. [1] Given any weighted undirected graph with n vertices, there is
a data structure for answering approximate distance-queries with

• Space:

• Query-time:

• Stretch:

2 Generalising to a higher stretch

Idea Sample in k levels.

• A0 = V contains all vertices.

• Let A1 samples vertices of A0 = V independently with probability p.

• A2 samples vertices of A1 independently with probability p.

• . . .

• Ak−1 samples each vertex of Ak−2 independently with probability p.

p is a probability to be determined later, and is the same probability throughout.

3

Generalising p(v) For a vertex v, for each i = 1, . . . , k − 1, let pi(v) denote
vertex in Ai closest to v.

Figure 2: The bunch of x. The blue elements outside the brown circle are not
included. The blue or brown elements outside the green circle are not included
either. All green elements belong to the bunch.

Generalising B0(v) For a vertex v, for each i = 0, . . . , k−2, let Bi(v) denote
the vertices of Ai that are closer to v than pi+1(v). (See Figure 2)

Let Bk−1(v) denote Ak−1.

For a vertex v, let B(v) =
⋃k−1

i=0 Bi(v). We call this the bunch of v.

What to store

1. For each vertex v, store all identifiers p1(v), p2(v), . . . , pk−1(v).

2. For each vertex v, store the distance to the vertices u ∈ B(v).

6 Exercise (generalising Ex. 1) Again, each bunch B(v) (together with
all its distances) can be stored in O(|B(v)|) space with constant lookup-time.

7 Exercise What is the space consumption? For each vertex . . .

1. How many identifiers do we store?

2. How large is B(v) in expectation?

• Can you bound the expected size of Bi(v)? (Hint: See exercise 5.3)

• What is the expected size of Bk−1 = Ak−1?

(as a function of p)

• Find a value for p such that the expected space consumption of
Bk−1(v) is the same as the other Bi(v).

• Can you bound the expected size of the union
⋃k−1

i=0 Bi(v)?

(Use the value of p that you just found.)

4

Algorithm 2 (Distance(u,v)).
w = u; i = 0;
while w /∈ B(v) do

i++;
(u, v) = (v, u);
w = pi(u);

end while
return d(w, u) + d(w, v)

8 Exercise (hard but important)

• Assume d(u, pi−1(u)) ≤ (i− 1) · d(u, v).

Show that pi−1(u) ∈ B(v) ∨ d(v, pi(v)) ≤ i · d(u, v)

(Hint: use the triangle inequality.)

• Show that when the algorithm returns, it returns at most (2i+ 1) ·d(u, v).

Note that upon return, i < k.

Theorem 3. [1] Given any weighted undirected graph with n vertices, for any
value k, there is a data structure for answering approximate distance-queries
with

• Space:

• Query-time:

• Stretch:

(Fill in the blanks as functions of k.)
What space, time and stretch do you get when you set k = log n?

3 Conventional exercises
9 Modelling In [1], the authors state that “the US road network is a pla-
nar graph”. Indeed, a planar undirected weighted graph models a large road
network. Can you think of different ways of modelling a large road network as
a graph? What are their advantages and disadvantages?

10 Exercise The approximate distance oracle of [1] presented in this lecture
does not work If G is a weighted directed graph. Point to where the argument
breaks down.

11 Exercise Let S ⊂ V be a subset of vertices. Assume we only want to
answer approximate distance-queries for s1, s2 ∈ S.

• For which vertices v ∈ V is the bunch B(v) needed in order to answer
such queries?

• What is the space consumption for this “restricted” oracle?

• Can you remove the any dependency on n = |V | from th the space con-
sumption, so there is no dependency on n?

5

Spanners Let G = (V,E) be an undirected graph with non-negative edge
weights and let δ ≥ 1. A δ-spanner of G is a subgraph S = (V,E′) of G spanning
all vertices such that for all u, v ∈ V , the shortest path distance between u and
v in S is at most a factor of δ longer than their shortest path distance in G.
Fact: for any integer k ≥ 1 and any graph G with m edges and n vertices, G
contains a (2k − 1)-spanner S with O(kn1+1/k) edges, and S can be found in
O(km+ n) time.

12 Exercise Let ε > 0 be a given constant. Combine the above Theorem
with that of Thorup and Zwick to obtain an approximate distance oracle with
O(1) stretch, O(1) query time, O(n1+ε) space, and O(m + n1+ε) construction
time. (Note: for construction time, this relies on the result of Exercise 17.)

4 Fast construction time

13 Exercise Assume there is an O(m) time algorithm for calculating the
single-source-shortest path tree of a graph (Thorup [2]).

• Given any i < k, show how to determine pi(v) for all v ∈ V in O(m) time.

For any vertex u ∈ Ai \Ai+1, define the co-bunch C(u) as {v ∈ V |d(u, v) <
d(v, pi+1(v))}. That is, v ∈ C(u) ⇐⇒ u ∈ B(v).

14 Exercise Show that for any i < k, for any vertex w ∈ Ai, if v′ lies on a
shortest path from w to v and v ∈ C(w), then v′ ∈ C(w).

15 Exercise[∗] Show that for each w, all the distances d(u,w) for u ∈ C(w)
can be calculated in time proportional to log n ·

∑
v∈C(w) deg(v).

(Hint: use a priority queue.)

Lemma: For each w, all the distances d(u,w) for u ∈ C(w) can be calculated
in O(

∑
v∈C(w) deg(v)) time (using methods from [2]).

16 Exercise Use the above Lemma to show that the total time of obtaining
all the distances in the bunches of all vertices is at most

O

(∑
v∈V
|B(v)|deg(v)

)

17 Exercise Analyse the construction time of the data structures given in
Sections 1 and 2. (Hint: Use the result of Exercise 16.)

6

