Approximate Near Neighbor Search:
Locality Sensitive Hashing

Inge Li Gartz

Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure
which given a query point x returns the point in P closest to x.

« Metric. Distance function d is a metric:

—o @ @ *—@ 4 @ @ @
Query point

Approximate Near Neighbors

. ApproximateNearNeighbor(x): Return a point y such that d(x,y) < ¢ - mind(x, 7)
ZEP

- c-Approximate r-Near Neighbor: Given a point x if there exists a point zin P

d(x,z) < r then return a point y such that d(x, y) < ¢ - r. If no such point z exists
return Fail.

- Randomised version: Return such an y with probability o.

/)

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is (7, cr, p,, p,)-sensitive
with p; > p,and ¢ > 1 if:

- dx,y) <r = Plh(x) =h()] > p, (close points)
- d(x,y) > cr = Plh(x)=h(y)] £p, (distant points)

for h chosen randomly from H.

z hashes to
same value as x
with probability
at least p,

y hashes to
same value as x

with probability
A at most p,

<eo

no guarantees

Hamming Distance

« P set of n bit strings each of length d.
« Hamming distance. the number of bits where x and y differ:

dx,y) = [{i:x; # y;} |

« Example.

Hamming distance = 3

- Hash function. Chose i € {1,...,d} uniformly at random and set /(x) = x;.
- What is the probability that h(x) = h(y)?
+dx,y) <r = Plh(x) =h(y)] 2 1-r/d

« d(x,y) > cr = Plh(x) = h(y)] £ 1 —cr/d

LSH with Hamming Distance: Solution 1

- Pick random index i uniformly at random. Let h(x) = x;.

- Bucket: Strings with same hash value i(x).

- Insert(x): Insert x in the list A[/(x)]

 NearNeighbour(x): Compute Hamming distance from x to all bitstrings in A[/(x)]
until find one that is at most cr away. If no such string found return FAIL.

h(x) = x;

a=0011101 h@) =1 d=0110011
b=0101001 h(b)=0 e=1011101
c=0010010 h(c)=1 f=1101101

hd) = 1

h(e) = 1

hf) =0
~i-8

~B-f-B-8

Query time: O(n)

LSH with Hamming Distance: Solution 2

- Pick k£ random indexes uniformly and independently at random with replacement:

- glx) = XiXiy

- Example. kK = 3. g(x) = x,x3%¢

xl-k

x= 110
y= 0] 1

1
1

0
0

0
0

 Probability that g(x) = g(y)?

gx) =011
gly) =111

+ d(x,y) <= Plgx) = g > (1 — r/d)*

» d(x,y) > cr = Plgx) = g1 < (1 = cr/d)*

z hashes to
same value as x
with probability
at least p{‘

y hashes to
same value as x
with probability
at most pé‘

(o).

no guarantees

LSH with Hamming Distance: Solution 2

- Pick k£ random indexes uniformly and independently at random with replacement:

. glx) = X; Xp oo X

- Bucket: Strings with same hash value g(x).

g(x) = xyx4%4

a=0011101 g@) =011 d=0110011 g(d) =101
b =0101001 gb) =111 e=1011101 g(e) =011
¢ = 0010010 g(c) =000 f=1101101 g(f) =111

LSH with Hamming Distance: Solution 2

- Pick k£ random indexes uniformly and independently at random with replacement:
. glx) = X; Xp oo X

- Bucket: Strings with same hash value g(x).

- Save buckets in a hash table T with hash function A.

g(x) = xyx4%4

a=0011101 g(a)=011 d=0110011 g(d) =101
b =0101001 gb) =111 e=1011101 g(e) =011
¢ = 0010010 g(c) =000 f=1101101 g(f) =111

h(011,) = 1

h(111,) = 6
17(000,) = 9
0

> 101

O
Bkl -

—
—
—

Ol N PA~]JTW]IDN

Bl S | BN

LSH with Hamming Distance: Solution 2

- Pick k£ random indexes uniformly and independently at random with replacement:
.« 8(X) = X, 00

- Bucket: Strings with same hash value g(x).

- Save buckets in a hash table T with hash function A.

- Insert(x): Insert x in the list of g(x) in 7.

- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in g(x)
until find one that is at most cr away. If no such string found return FAIL.

g(x) = xyx4%4

a=0011101 g(a)=011 d=0110011 g(d) =101
b =0101001 gb) =111 e=1011101 g(e) =011
¢ = 0010010 g(c) =000 f=1101101 g(f) =111

h(011,) = 1
h(111,) = 6
17(000,) = 9
0

> 101

O
Bkl -

—
—
—

Ol N PA~]JTW]IDN

Bl S | BN

LSH with Hamming Distance: Solution 2

z hashes to y hashes to

same value as X same value as x
with probability with probability
at least p{‘ at most pé‘

¢5

<e

no guarantees

- What happens when we increase k?

+ Far away strings:

LSH with Hamming Distance: Solution 2

z hashes to y hashes to
same value as x same value as x
with probability with probability
at least p{‘ at most pé‘

¢5

<e

no guarantees

- What happens when we increase k?

« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

LSH with Hamming Distance: Solution 2

z hashes to y hashes to
same value as x same value as x
with probability with probability
at least p{‘ at most pé‘

¢5

<e

no guarantees

- What happens when we increase k?

« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

+ Close strings:

LSH with Hamming Distance: Solution 2

z hashes to y hashes to
same value as x same value as x
with probability with probability
at least p{‘ at most pé‘

¢5

<e

no guarantees

- What happens when we increase k?
« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

+ Close strings: Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 2

Zz hashes
to same
value as x

no guarantees

(9

y hashes
to same
value as x

—

y

« Expected number of far away strings that hashes to same bucket as x:

- F={y:dkx,y) > cr}.

- Forye FF wewant Plg(y)=gkx)] <1/n:

- Setk =lgn/lg(1/p,)

Cx = 1y collides with x
Y 0 otherwise

- #far away strings colliding with x: X = 2 Xy

C E[X]= Y E[X]=) 1/n<1.

YEF yEF

yEF

- Markov: P[X > 6] < E[X]/6 < 1/6.

LSH with Hamming Distance: Solution 2

z hashes to y hashes to

same value as X same value as x
with probability with probability
at least p{‘ at most pé‘

<e

no guarantees

- What happens when we increase k?

+ Probability that a far away string hashes to the same bucket as x decrease.
- k =1gn/lg(1/p,) = with probability > 5/6 at most 6 far away strings hashes to x’s bucket.

* Probability that a close string hashes to the same as x decrease. (&

LSH with Hamming Distance: Solution 3 (Amplification)

. Construct L hash tables 7} . Each table 7} has its own independently chosen hash function
hj and its own independently chosen locality sensitive hash function 8-

- Insert(x): Forall 1 < j < Linsertx in the list of g;(x) in T,.

. Query(x): Forall 1 < j < L check each element in bucket gj(x) in 7} Return the one closest

to x.

0 010 [—| 101 0

1 g 1 011 [— 101
2 2 E i
3 {001 3

4 E 4

5 5

6 6 111

7 000 7 g

5| B 3

9 9 000

~
3
|~

LSH with Hamming Distance

_ lgn = 1g(1/py)
lg(1/py) lg(1/p,y)’

and L = [2n”|, wherep; =1 —r/d andp, = 1 — cr/d.

- Claim 1. If there exists a string z* in P with d(x,z*) < r then with probability at least 5/6
we will return some z in P for which d(x,z) < r.

Z* hashes to
 Probability that z* collides with x: same value as x
_ . with probability
. P[al . gl-(X) = gl(z*)] = 1 — P[gl(X) ?é gi(Z*) for all l] at Ieastp{‘

L
=1 -] Plei) # g*)]

i=1
L
=1- (1 — Plgi(x) = gi(Z*)]) '
; &
L
>1-JJa-pH =1-00-pht 21—
i=1

1
>]1—-——2>1-1/6=5/6
2

LSH with Hamming Distance

- Expected query time is O(L): Can show that the
expected number of far away strings that collides

with x is L.
+ Claim. The expected number of far away strings that | WihPoPaONY | o6l of
collides with x is L. l 5?.3?‘1 collides

z* collides with
X.

&

no guarantees
(could be MANY)

Locality Sensitive Hashing

- Locality sensitive hash function. A family of hash functions # is (r, cr, py, p,)
-sensitive with p; > p, and ¢ > 1 if:

- dx,y) <r = Plh(x) =h(y)] > p, (close points)
- d(x,y) > cr = Plh(x)=h(y)] £p, (distant points)

- Amplification.
- Choose L hash functions g(x) = hy. #x) - hz,j(x) hk’j(x), where hl-,j is chosen

independently and uniformly at random from 7.

 Locality sensitive hashing scheme.

. Construct L hash tables 7} .
. Insert(x): Forall1 < j < Linsert x in the list of gj(x) in 7} .

. Query(x): Forall 1 < j < L check each element in bucket gj(x) in 7} Return the

one closest to x.

Jaccard distance and Min Hash
|ANB]|

. Jaccard distance. Jaccard similarity: Jsim(A, B) =
|AU B|

- Jaccard distance: 1- Jsim(A,B).
- Hash function: Min Hash. (exercise)

—Xerclises

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

[ONN NORN NN NONN)

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

[ONN NORN NN NONN)

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

(ONN NORN NN NN [

N
< b

C

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

(ONN NORN NN NN [

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

(ONN NORN NN NN [

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(«£(u, v))

« Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

\

® |0 |T|D

Angular Distance and Sim Hash

« Collection of vectors.

 Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.

- Assume u and v are unit vectors. Then u - v = cos(Z(u, v))
+ Hash function: Sim Hash.

- Random projection: Take a random vector r and set /1,(u) = sign(r - u)

\

(ONN NORN NN NN [

- Can show that P[h(u) = h(v)] =1 — 2(u, v)/x.

