
Approximate Near Neighbor Search: 
Locality Sensitive Hashing
Inge Li Gørtz



• Nearest Neighbor. Given a set of points P in a metric space, build a data structure 
which given a query point x returns the point in P closest to x. 


• Metric. Distance function d is a metric:

1. d(x,y) ≥ 0 

2. d(x,y) = 0 if and only if x = y

3. d(x,y) = d(y,x)

4. d(x,y) ≤ d(x,z) + d(z,y)


• Warmup. 1D: Real line 

Nearest Neighbor

Query point 



• ApproximateNearNeighbor(x): Return a point y such that 


• c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P 
  then return a point y such that . If no such point z exists 

return Fail. 


• Randomised version: Return such an y with probability .

d(x, y) ≤ c ⋅ min
z∈P

d(x, z)

d(x, z) ≤ r d(x, y) ≤ c ⋅ r

δ

Approximate Near Neighbors

r

cr

z
y



• Locality sensitive hashing. A family of hash functions H is -sensitive 
with  and  if: 


•         (close points)


•       (distant points)

for h chosen randomly from H. 

(r, cr, p1, p2)
p1 > p2 c > 1

d(x, y) ≤ r ⇒ P[h(x) = h(y)] ≥ p1

d(x, y) ≥ cr ⇒ P[h(x) = h(y)] ≤ p2

Locality Sensitive Hashing

r

cr

z

y

x

z hashes to 
same value as x 
with probability 
at least p1 y hashes to 

same value as x 
with probability 
at most p2

no guarantees



• P set of n bit strings each of length d. 

• Hamming distance. the number of bits where x and y differ:





• Example.


• Hash function. Chose  uniformly at random and set .


• What is the probability that h(x) = h(y)?


• 


•

d(x, y) = |{i : xi ≠ yi} |

i ∈ {1,…, d} h(x) = xi

d(x, y) ≤ r ⇒ P[h(x) = h(y)] ≥ 1 − r/d

d(x, y) ≥ cr ⇒ P[h(x) = h(y)] ≤ 1 − cr/d

Hamming Distance

x = 1 0 1 0 0 1 0 0
y = 0 1 1 0 0 1 1 0

Hamming distance = 3



• Pick random index  uniformly at random. Let .


• Bucket: Strings with same hash value .  


• Insert( ): Insert  in the list 


• NearNeighbour( ): Compute Hamming distance from  to all bitstrings in  
until find one that is at most  away. If no such string found return FAIL.

i h(x) = xi

h(x)

x x A[h(x)]

x x A[h(x)]
cr

LSH with Hamming Distance: Solution 1

h(a) = 1

0

f
b

1

a
c d
e

h(x) = x3

a = 0011101
b = 0101001
c = 0010010

d = 0110011
e = 1011101
f = 1101101

h(b) = 0
h(c) = 1

h(d) = 1
h(e) = 1
h( f ) = 0

0

1 e d

f

c a

b

Query time: O(nd).



• Pick  random indexes uniformly and independently at random with replacement:


• 


• Example. . 


• Probability that g(x) = g(y)?


• 


•

k
g(x) = xi1xi2⋯xik

k = 3 g(x) = x2x3x6

d(x, y) ≤ r ⇒ P[g(x) = g(y)] ≥ (1 − r/d)k

d(x, y) ≥ cr ⇒ P[g(x) = g(y)] ≤ (1 − cr/d)k

LSH with Hamming Distance: Solution 2

x = 1 0 1 0 0 1 0 0
y = 0 1 1 0 0 1 1 0

g(x) = 011
g(y) = 111

z hashes to 
same value as x 
with probability 
at least pk

1

y hashes to 
same value as x 
with probability 
at most pk

2

no guarantees

r

cr

z

y

x



• Pick  random indexes uniformly and independently at random with replacement:


• 


• Bucket: Strings with same hash value . 

k
g(x) = xi1xi2⋯xik

g(x)

LSH with Hamming Distance: Solution 2

g(a) = 011

g(c) = 000

g(d) = 101
g(b) = 111 g(e) = 011

g( f ) = 111

011 111 000 101

a b c d
e f

a = 0011101
b = 0101001

g(x) = x2x4x7

c = 0010010

d = 0110011
e = 1011101
f = 1101101



• Pick  random indexes uniformly and independently at random with replacement:


• 


• Bucket: Strings with same hash value . 


• Save buckets in a hash table  with hash function . 

k
g(x) = xi1xi2⋯xik

g(x)

T hT

LSH with Hamming Distance: Solution 2

g(a) = 011

g(c) = 000

g(d) = 101
g(b) = 111 g(e) = 011

g( f ) = 111

011 111 000 101

a b c d
e f

a = 0011101
b = 0101001

g(x) = x2x4x7

c = 0010010

d = 0110011
e = 1011101
f = 1101101

0

1

2

3

4

5

6

7

8

9

011 101

111

000

e

a

d

f

b

c

hT(0112) = 1
hT(1112) = 6

hT(1012) = 1
hT(0002) = 9



• Pick  random indexes uniformly and independently at random with replacement:


• 


• Bucket: Strings with same hash value . 


• Save buckets in a hash table  with hash function . 


• Insert( ): Insert  in the list of  in .


• NearNeighbour( ): Compute Hamming distance from  to all bitstrings in  
until find one that is at most  away. If no such string found return FAIL.

k
g(x) = xi1xi2⋯xik

g(x)

T hT

x x g(x) T

x x g(x)
cr

LSH with Hamming Distance: Solution 2

g(a) = 011

g(c) = 000

g(d) = 101
g(b) = 111 g(e) = 011

g( f ) = 111

011 111 000 101

0

1

2

3

4

5

6

7

8

9

011 101

111

000

e

a

d

f

b

c

hT(0112) = 1
hT(1112) = 6

hT(1012) = 1
hT(0002) = 9

a = 0011101
b = 0101001

g(x) = x2x4x7

c = 0010010

d = 0110011
e = 1011101
f = 1101101

a b c d
e f



• What happens when we increase k?


• Far away strings:  

LSH with Hamming Distance: Solution 2

z hashes to 
same value as x 
with probability 
at least pk

1

y hashes to 
same value as x 
with probability 
at most pk

2

no guarantees

r

cr

z

y
x



• What happens when we increase k?


• Far away strings:  Probability that a far away string hashes to the same bucket as x decrease. 

LSH with Hamming Distance: Solution 2

z hashes to 
same value as x 
with probability 
at least pk

1

y hashes to 
same value as x 
with probability 
at most pk

2

no guarantees

r

cr

z

y
x



• What happens when we increase k?


• Far away strings:  Probability that a far away string hashes to the same bucket as x decrease.


• Close strings: 

LSH with Hamming Distance: Solution 2

z hashes to 
same value as x 
with probability 
at least pk

1

y hashes to 
same value as x 
with probability 
at most pk

2

no guarantees

r

cr

z

y
x



• What happens when we increase k?


• Far away strings:  Probability that a far away string hashes to the same bucket as x decrease. 


• Close strings:  Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 2

z hashes to 
same value as x 
with probability 
at least pk

1

y hashes to 
same value as x 
with probability 
at most pk

2

no guarantees

r

cr

z

y
x



• Expected number of far away strings that hashes to same bucket as x:


• . 


• For    we want     :


• Set         

•                       


• #far away strings colliding with x:  


•  


• Markov: 

F = {y : d(x, y) > cr}

y ∈ F P[g(y) = g(x)] ≤ 1/n

k = lg n /lg(1/p2)

Xy = {1 y collides with x
0 otherwise

X = ∑
y∈F

Xy

E[X] = ∑
y∈F

E[Xy] = ∑
y∈F

1/n ≤ 1.

P[X > 6] < E[X]/6 ≤ 1/6.

LSH with Hamming Distance: Solution 2
z hashes 
to same 
value as x 

y hashes 
to same 
value as x 

no guarantees

r

cr

y



• What happens when we increase k?


• Probability that a far away string hashes to the same bucket as x decrease. 


•  with probability ≥ 5/6 at most 6 far away strings hashes to x’s  bucket.  


• Probability that a close string hashes to the same as x decrease. 😕

k = lg n /lg(1/p2) ⇒

LSH with Hamming Distance: Solution 2

z hashes to 
same value as x 
with probability 
at least pk

1

y hashes to 
same value as x 
with probability 
at most pk

2

no guarantees

r

cr

z

y
x



• Construct  hash tables  . Each table  has its own independently chosen hash function 
 and its own independently chosen locality sensitive hash function .


• Insert( ):  For all  insert  in the list of  in . 


• Query( ): For all  check each element in bucket  in . Return the one closest 
to .

L Tj Tj
hj gj

x 1 ≤ j ≤ L x gj(x) Tj

x 1 ≤ j ≤ L gj(x) Tj
x

LSH with Hamming Distance: Solution 3 (Amplification)

0

1

2

3

4

5

6

7

8

9

001

101010

000

u

y

zy

w

x

T1

0

1

2

3

4

5

6

7

8

9

011 101

111

000

x

v

u

y

w

zTL



Let  , , and , where   and .


• Claim 1. If there exists a string z* in P with d(x,z*) ≤ r then with probability at least 5/6 
we will return some z in P for which d(x,z) ≤ r.  

• Probability that z* collides with x:

•        


       


          


     


  

k =
lg n

lg(1/p2)
ρ =

lg(1/p1)
lg(1/p2)

L = ⌈2nρ⌉ p1 = 1 − r/d p2 = 1 − cr/d

P[∃i : gi(x) = gi(z*)] = 1 − P[gi(x) ≠ gi(z*) for all i]

= 1 −
L

∏
i=1

P[gi(x) ≠ gi(z*)]

= 1 −
L

∏
i=1

(1 − P[gi(x) = gi(z*)])

≥ 1 −
L

∏
i=1

(1 − pk
1) = 1 − (1 − pk

1)L ≥ 1 − e−Lpk
1

≥ 1 −
1
e2

≥ 1 − 1/6 = 5/6

LSH with Hamming Distance

z* hashes to 
same value as x 
with probability 
at least pk

1

r

cr

z* x



• Expected query time is O(L): Can show that the 
expected number of far away strings that collides 
with x is L. 


• Claim. The expected number of far away strings that 
collides with x is L.  

LSH with Hamming Distance

At most 6L of 
these collides 
with x.

no guarantees 
(could be MANY)

r

cr

z*

y

x

z* collides with 
x.

with probability 
≥ 5/6



• Locality sensitive hash function. A family of hash functions  is 
-sensitive with  and  if: 


•         (close points)


•       (distant points)


• Amplification.


• Choose  hash functions , where  is chosen 
independently and uniformly at random from .


• Locality sensitive hashing scheme.


• Construct  hash tables  . 


• Insert( ):  For all  insert  in the list of  in  . 


• Query( ): For all  check each element in bucket  in . Return the 
one closest to .

ℋ (r, cr, p1, p2)
p1 > p2 c > 1

d(x, y) ≤ r ⇒ P[h(x) = h(y)] ≥ p1

d(x, y) ≥ cr ⇒ P[h(x) = h(y)] ≤ p2

L gj(x) = h1,j(x) ⋅ h2,j(x) ⋯ hk,j(x) hi,j
ℋ

L Tj

x 1 ≤ j ≤ L x gj(x) Tj

x 1 ≤ j ≤ L gj(x) Tj
x

Locality Sensitive Hashing



• Jaccard distance. Jaccard similarity: 


• Jaccard distance: 1- Jsim(A,B).

• Hash function: Min Hash. (exercise)

Jsim(A, B) =
|A ∩ B |
|A ∪ B |

Jaccard distance and Min Hash



Exercises



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e



• Collection of vectors. 

• Distance between two vectors is the angular distance between them 

. 


• Assume u and v are unit vectors. Then 

• Hash function: Sim Hash.


• Random projection: Take a random vector r and set 


• Can show that .

dist(u, v) = ∠(u, v)/π
u ⋅ v = cos(∠(u, v))

hr(u) = sign(r ⋅ u)

P[h(u) = h(v)] = 1 − ∠(u, v)/π

Angular Distance and Sim Hash

a
b
c
d
e

a

bc

d

e


