Approximate Near Neighbor Search:;
Locality Sensitive Hashing

Inge Li Gortz

Nearest Neighbor

+ Nearest Neighbor. Given a set of points P in a metric space, build a data structure
which given a query point x returns the point in P closest to x.

+ Metric. Distance function d is a metric:

1. d
2.d
3.d
4. d

—

X.y) 2 0

—

x,y)=0ifand only if x =y
xy) = d(y,x)
x,y) < d(x,2) + d(z,y)

=~ =

* Warmup. 1D: Real line

Query point

Approximate Near Neighbors

. ApproximateNearNeighbor(x): Return a point y such that d(x, y) < ¢ - mind(x, z)
2P

+ c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P
d(x,z) < r then return a point y such that d(x, y) < ¢ - r. If no such point z exists
return Fail.

+ Randomised version: Return such an y with probability 8.

/)

Locality Sensitive Hashing

« Locality sensitive hashing. A family of hash functions H is (7, cr, p;, p,)-sensitive
with p; > p, and ¢ > 1 if:

< dx,y) <r = Plh(x) =h()] >p, (close points)
- d(x,y) > cr = P[h(x) =h(y)] <p, (distant points)

for h chosen randomly from H.

z hashes to
same value as x
with probability
at least p;

y hashes to
same value as x

with probability
A at most p,

no guarantees

Hamming Distance

+ P set of n bit strings each of length d.
» Hamming distance. the number of bits where x and y differ:

dx,y) =|{i:x; # y;}|

X ! ! ! amming distance = 3
Hamm1 1star =

« Hash function. Chose i € {1,...,d} uniformly at random and set i(x) = x;.

+ Example.

+ What is the probability that h(x) = h(y)?
+d(x,y) <r = Plh(x) =h(y)] 2 1 —r/d

«d(x,y) > cr = Plh(x) = h(y)] < 1 —crld

LSH with Hamming Distance: Solution 1
- Pick random index i uniformly at random. Let A(x) = x;.

- Bucket: Strings with same hash value A(x).

- Insert(x): Insert x in the list A[A(x)]

+ NearNeighbour(x): Compute Hamming distance from x to all bitstrings in A[2(x)]
until find one that is at most cr away. If no such string found return FAIL.

h(x) = x3

a=0011101 h(a)y=1 d=0110011 h(d) =1 -nd)
e=1011101 h(c): 1 3

b=0101001 h(b) =
c=0010010 h(c)=1 f=1101101 A(f)=

ll

LSH with Hamming Distance: Solution 2

+ Pick k random indexes uniformly and independently at random with replacement:

- g = Xi Xiy X,

+ Example. k = 3. g(x) = x,x3%4 4 hashes to

same value as x

0

-

;
y= 0|1

-

0 0110 O 2(x) =011 :vtitrngrsc:t;a;bility
0O O0j1]1 O gly) =111

+ Probability that g(x) = g(y)?

- d(x,y) S 7= Plgx) = g0)] = (1 = r/d)

- d(x,y) > cr = Plg(x) = g)] < (1 — cr/d)

z hashes to
same value as x
with probability

k
at least p; no guarantees

LSH with Hamming Distance: Solution 2

+ Pick k random indexes uniformly and independently at random with replacement:

glx) = X; X e X;

k

« Bucket: Strings with same hash value g(x).

gx) = Xpx,x7

a=0011101 gl@)=011 d=0110011 g(d) =101
b=0101001 &®b) =111 e=1011101 g(e) =011
¢=0010010 g(c)=000 f=1101101 g(f) =111

LSH with Hamming Distance: Solution 2

+ Pick k random indexes uniformly and independently at random with replacement:

- 8(X) = XXX

Bucket: Strings with same hash value g(x).

+ Save buckets in a hash table T with hash function /.

8(X) = x,04%7

a=0011101 g(a) =011
b =0101001 &) =111
¢ = 0010010 g(c) =000

d=0110011 g(d) =101
e=1011101 g(e) =011
f=1101101 g(f) =111

hp(011) = 1
hp(111,) = 6
hy(000,) =9

hy(101,) = 1
o]

K
B
2]

5 |

6
7] 8
8
Eigta

LSH with Hamming Distance: Solution 2

Pick k random indexes uniformly and independently at random with replacement:

- 8(X) = XX, X,
Bucket: Strings with same hash value g(x).

Save buckets in a hash table 7" with hash function /.
Insert(x): Insert x in the list of g(x) in T.

NearNeighbour(x): Compute Hamming distance from x to all bitstrings in g(x)
until find one that is at most cr away. If no such string found return FAIL.

8(x) = xyx4x7

a=0011101 g(a) =011
b=0101001 &) =111
¢ = 0010010 g(c) =000

d=0110011 g(d) =101
e =1011101 g(e) =011
f=1101101 g(f) =111

h011,) = 1
h(111) =6
h(000,) = 9
h(101,) = 1

[e][=]~[o]o]s[e]v]-]o]

LSH with Hamming Distance: Solution 2

z hashes to
same value as x
with probability
at least plk

y hashes to
same value as x
with probability
at most p§

no guarantees

« What happens when we increase k?

« Far away strings:

LSH with Hamming Distance: Solution 2

z hashes to
same value as x
with probability
at least p{"

y hashes to
same value as x
with probability
at most pzk

no guarantees

+ What happens when we increase k?

« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

z hashes to
same value as x
with probability
at least pf

LSH with Hamming Distance: Solution 2

y hashes to
same value as x
with probability
at most pf

z hashes to
same value as x
with probability
at least p|

LSH with Hamming Distance: Solution 2

y hashes to
same value as x
with probability
at most p}

no guarantees

* What happens when we increase k?
« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

« Close strings:

<e

no guarantees

+ What happens when we increase k?
« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

+ Close strings: Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 2

z hashes y hashes

LSH with Hamming Distance: Solution 2

z hashes to y hashes to

to same to same
value as x value as x
“’

no guarantees

« Expected number of far away strings that hashes to same bucket as x:
« F={y:dxy) >cr}.

« Forye F wewant Pl[g(y)=gx)]<1/n:
« Setk =lgn/lg(1/p,)

“x = 1y collides with x
7 0 otherwise

- #far away strings colliding with x: X = 2 X,
yeF

 EIX]= Y EX]=) 1/n<l
yEF yEF

« Markov: P[X > 6] < E[X]/6 < 1/6.

same value as x same value as x
with probability with probability
at least p{" at most pzk

<e

no guarantees

+ What happens when we increase k?

+ Probability that a far away string hashes to the same bucket as x decrease.
« k=1gn/lg(l/p,) = with probability > 5/6 at most 6 far away strings hashes to x’s bucket.

« Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 3 (Amplification)

. Construct L hash tables T, . Each table T/ has its own independently chosen hash function
lz_/- and its own independently chosen locality sensitive hash function 8

- Insert(x): Foralll < j < Linsertx in the list of g/(x) in T,

. Query(x): Forall 1 < j < L check each element in bucket g_/-(x) in 7} Return the one closest
to x.

Slele|~lofafs[e]v]-]o]
Slele[~[olo]efev]-]o]

LSH with Hamming Distance

Ign _lg(/py)

Letk = P = s
1g(1/py) 1g(1/py)

and L = [2n”], wherep; =1 —r/d andp, =1 — cr/d.

+ Claim 1. If there exists a string z* in P with d(x,z*) < r then with probability at least 5/6
we will return some z in P for which d(x,z) < r.

z* hashes to
+ Probability that z* collides with x: same value as x
. X with probability
- P[Fi: g,—(x) = gi(Z*)] =1- P[gi(x) # g,-(z*) for all i] at Ieastplk

L
=1 - [[Pla # ()]

i=1
L
=1-|](1-Plgx) = gz*]1) '
&
L
>1-JJa-ph =1-0=ppf 21—
i=1

1
>21-—2>1-1/6=5/6
e2

LSH with Hamming Distance

« Expected query time is O(L): Can show that the
expected number of far away strings that collides
with x is L.

with probability
=>5/6

+ Claim. The expected number of far away strings that
collides with x is L.

At most 6L of
these collides
with x.

z* collides with
X.

no guarantees
(could be MANY)

Locality Sensitive Hashing
« Locality sensitive hash function. A family of hash functions # is (7, cr, D1, P2)
-sensitive with p; > p, and ¢ > 1 if:
< dx,y) <r = Plh(x) =h()] >p, (close points)
« d(x,y) > cr = Plh(x) =h(y)] <p, (distant points)

+ Amplification.

. Choose L hash functions gj(x) = hlqj(x) . hzyj(x) hk’j(x), where hl»’j is chosen
independently and uniformly at random from 7.

* Locality sensitive hashing scheme.

- Construct L hash tables T; .
- Insert(x): Forall 1 < j < Linsertxinthe list of g,(x) in T;.

- Query(x): Forall 1 < j < L check each element in bucket gj(x) in 7} Return the
one closest to x.

Jaccard distance and Min Hash
. R |ANnB|
. Jaccard distance. Jaccard similarity: Jsim(A, B) = ———
|AUB|
+ Jaccard distance: 1- Jsim(A,B).
» Hash function: Min Hash. (exercise)
Exercises
Angular Distance and Sim Hash Angular Distance and Sim Hash
+ Collection of vectors. + Collection of vectors.
- Distance between two vectors is the angular distance between them - Distance between two vectors is the angular distance between them
dist(u,v) = 2(u,v)/x. dist(u,v) = £(u,v)/n.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v)) + Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash. + Hash function: Sim Hash.
+ Random projection: Take a random vector r and set h,(1) = sign(r - u) + Random projection: Take a random vector r and set h,(u) = sign(r - u)
d a
b
C
a d
e e
c b

Angular Distance and Sim Hash

+ Collection of vectors.
- Distance between two vectors is the angular distance between them
dist(u, v) = £(u,v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(1) = sign(r - u)

EEE

Angular Distance and Sim Hash

+ Collection of vectors.
- Distance between two vectors is the angular distance between them
dist(u, v) = 2(u,v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(«£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(u) = sign(r - u)

BEA

Angular Distance and Sim Hash

+ Collection of vectors.
- Distance between two vectors is the angular distance between them
dist(u, v) = £(u,v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(1) = sign(r - u)

EEE

Angular Distance and Sim Hash

+ Collection of vectors.
- Distance between two vectors is the angular distance between them
dist(u, v) = 2(u, v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(u) = sign(r - u)

Angular Distance and Sim Hash

+ Collection of vectors.

- Distance between two vectors is the angular distance between them
dist(u,v) = £(u,v)/x.

+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(1) = sign(r - u)

Angular Distance and Sim Hash

+ Collection of vectors.

- Distance between two vectors is the angular distance between them
dist(u,v) = £(u,v)/x.

+ Assume u and v are unit vectors. Then u - v = cos(«£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(u) = sign(r - u)

+ Can show that P[h(u) = h(v)] = 1 — 2(u, v)/x.

