
Philip Bille

Massively Parallel Computation

• Computational Model

• Summing

• Sorting

• Minimum Spanning Tree

Massively Parallel Computation

• Computational Model

• Summing

• Sorting

• Minimum Spanning Tree

Computational Model
• Massively Parallel Computation (MPC) model.

• P processors each with space S.

• Typically and .

• Synchronous computation in rounds.

• Round = local computation +

communication.

• Communication into a processor is < S.

• Complexity model.

• Rounds and space (⟹ communication)

• Computation is free (!)

• Implementations.

• Map Reduce

• Bulk-Synchronous parallel

𝖲 = 𝖭ε 𝖯 = 𝖭𝟣−ε

N = problem size

P = number of processors

S = space on each processor

Massively Parallel Computation

• Computational Model

• Summing

• Sorting

• Minimum Spanning Tree

• Sum. Given a list of N integers A0, A1,..., AN-1 compute their sum.

• Input distributed arbitrarily among processors.

Summing

426

7, 42, 3,1, 18, 2, 9, 10, 11, 4, 51, 6, 3, 24, 92, 56, 19, 8, 5, 22, 33

• Assume and

• Sum.

• Each processor computes local sum and sends to processor 0.

• Compute global sum at processor 0.

• Rounds. 2.

𝖲 = Θ (𝖭) 𝖯 = Θ (𝖭)

Summing

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33

Massively Parallel Computation

• Computational Model

• Summing

• Sorting

• Minimum Spanning Tree

• Sorting. Given a list of N integers A0, A1,..., AN-1 compute list (A0, rank(A0)), (A1,
rank(A1)), ..., (AN-1, rank(AN-1))

• Input and output distributed arbitrarily among processors.

Sorting

(7,8), (42,18), (3,3), (1,1), (18,13),(2,2), (9,10), (10, 11), (11,12),(4,5),(51,19),
(6,7), (3,4), (24,16), (92,21), (56, 20), (19,14), (8,9), (5, 6), (22,15), (33, 17)

7, 42, 3,1, 18, 2, 9, 10, 11, 4, 51, 6, 3, 24, 92, 56, 19, 8, 5, 22, 33

Sorting

• Goal. Sorting in O(1) rounds whp. with and .

• Idea.

• Sample items and use sample to partition items into ranges.

• Distribute items according to ranges and sort each range locally.

𝖲 = Θ̃ (𝖭) 𝖯 = Θ̃ (𝖭)
Θ̃(𝖭) Θ̃(𝖭)

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33

• Sample.

• Each processor samples its items with probability and sends these to

processor 0.

• Processor 0 broadcasts the set of samples to all processors.

• Let X be the set of samples. whp.

𝟤𝖯 ln 𝖭/𝖭

|𝖷 | ≤ 𝟦𝖯 ln 𝖭

Sorting

X

• Lemma. Let I be the sorted input. Consider a partition of I into P ranges of N/P
consecutive items. Then, all ranges contain at least one item from X whp.

• Proof.

•

• ⟹

• ⟹

Pr (range contains no items) = (𝟣 −
𝟤𝖯 ln 𝖭

𝖭)
𝖭
𝖯

≤ 𝖾−𝟤 ln 𝖭 =
𝟣

𝖭𝟤

Pr (some range contain no items) = 𝖯 ⋅
𝟣

𝖭𝟤
<

𝟣
𝖭

Pr (all ranges contain at least 1 item) > 𝟣 −
𝟣
𝖭

Sorting

Pr we don't
sample item

Pr we don't sample
item in range

(𝟣 + 𝗑)𝗋 ≤ 𝖾𝗋𝗑

I

X

• Compute local histogram.

• Each processor counts number of items in ranges defined by X.

• Each histogram uses O(|X|) space.

Sorting

X

• Compute global histogram.

• Each processor sends count for range i to processor i mod P.

• Processor i sums counts for range i mod P and sends sum to processor 0.

• Processor 0 constructs global count.

• Each processor is responsible for counting ranges and receives

 integers.
|𝖷 | /𝖯 = 𝖮(log 𝖭)

𝖮(𝖯 log 𝖭)

Sorting
+ + + =

+ + + =

+ + + =

..
.

+ + + =

+ + + =

• Select.

• Processor 0 selects such that each range defined by X' contains O(N/P)

items from I and |X'| = O(P).

• Processor 0 broadcasts X' to all machines.

• Sampling lemma ⟹ X' exists whp.

𝖷′ ⊆ 𝖷

Sorting

I

X

X'

• Exchange.

• Assign each range defined by X' to a processor.

• Each processor sends each of its items to processor assigned to corresponding

range.

• Each processor locally sorts its items.

• Output sorted sequence.

Sorting

I

X

X'

Sorting

• Theorem. Sorting in O(1) rounds whp. with and .
𝖲 = Θ̃ (𝖭) 𝖯 = Θ̃ (𝖭)

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33

Massively Parallel Computation

• Computational Model

• Summing

• Sorting

• Minimum Spanning Tree

• Minimum spanning tree. Given a connected, weighted, undirected graph compute
the minimum spanning tree (MST).

• Input given as list of edges with weights. Output edges in MST.

• Input and output distributed arbitrarily among processors.

Minimum Spanning Tree

• Let G be graph with n nodes and m edges.

• Goal. MST in rounds whp. for and

• Idea.

• Repeatly filter edges not part of MST in rounds.

• When all edges fit on one processor compute the MST directly.

𝖮(𝟣/ε) 𝖲 = Θ(𝗇𝟣+ε) 𝖯 = Θ(𝗆/𝖲) = Θ(𝗆/𝗇𝟣+ε)

Minimum Spanning Tree

• Shuffle.

• Let m' be the current edges. Initially, m' = m.

• Choose active processors.

• Distribute edges among active processors randomly.

• Let Ei be the edges at processor i. whp.

𝗄 = 𝟤𝗆′ /𝗇𝟣+ε

|𝖤𝗂 | = 𝗇𝟣+ε

Minimum Spanning Tree

k

• Filter. Active processor i:

• computes a local minimum spanning forest of G = (V, Ei).

• discards all other edges in Ei

Minimum Spanning Tree

• Repeat.

• Repeat shuffle and filter step until remaining edges fit on a single machine.

• Then compute MST.

Minimum Spanning Tree

• Correctness.

• Edges in Ei that are not in the local minimum spanning forest are not in the MST.

Minimum Spanning Tree

• Rounds.

• Total edges remaining after a round is

• ⟹ A round reduces edges by factor

• ⟹ After rounds the remaining edges is < .

≤ 𝗄(𝗇 − 𝟣) =
𝟤𝗆′

𝗇𝟣+ε
(𝗇 − 𝟣) <

𝟤𝗆′

𝗇ε

𝗇ε

𝖮(𝟣/ε) 𝗇𝟣+ε

Minimum Spanning Tree

• Theorem. MST in rounds whp. for and 𝖮(𝟣/ε) 𝖲 = Θ(𝗇𝟣+ε) 𝖯 = Θ(𝗆/𝗇𝟣+ε)

Minimum Spanning Tree

Massively Parallel Computation

• Computational Model

• Summing

• Sorting

• Minimum Spanning Tree

