Streaming: Sketching

Inge Li Gortz

Today

« Sketching
« CountMin sketch

Sketching

Sketching

» Sketching. create compact sketch/summary of data.

« Example. Durand and Flajolet 2003.

+ Condensed the whole Shakespeares’ work

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

+ Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative
error of 9.4%).
« Composable.
+ Data streams S| and S, with sketches sk(S;) and sk(S,)
« There exists an efficiently computable function f such that

sk(S, U Sy) = f(sk(S,), sk(S,))

CountMin Sketch

Frequency Estimation

« Frequency estimation. Construct a sketch such that can estimate the frequency f; of
any element i € [n].

* First try.
« array of counters of width w. Counters all initialized to be zero.
+ a pariwise independent hash function & : [n] — [w].

+ When item x arrives increment counter /4(x). h(z)
h(y) h(x)

- E[f] < fi+miw
o PUf,>fi+2miw] <172

CountMin Sketch

+ Fixed array of counters of width w and depth d. Counters all initialized to be zero.

- Pariwise independent hash function for each row h; : [n] — [w].

+ When item x arrives increment counter /,(x) of in all rows.

h1
hz
hs
ha

CountMin Sketch

« Fixed array of counters of width w and depth d. Counters all initialized to be zero.
« Pariwise independent hash function for each row ; : [n] — [w].

+ When item x arrives increment counter /,(x) of in all rows.

h1 (X) hz(X)

h+

ho d
hs

ha hs(x)

ha(x)

CountMin Sketch

» Fixed array of counters of width w and depth d. Counters all initialized to be zero.

- Pariwise independent hash function for each row /; : [n] — [w].
+ When item x arrives increment counter /,(x) of in all rows.

+ Estimate frequency of y: return minimum of all entries y hash to.

hi(y) ha(y)
h+
he g
hs
m;H E -hy(y)
ha(y) w

CountMin Sketch

Algorithm 1: CountMin

Initialize d independent hash functions h; : [n] = [w].
Set counter C;(b) = 0 for all j € [d] and b € [w].
while Stream S not empty do
if Insert(z) then
for j=1...ddo
| Cj(hy(x)) = +1
end
else if Frequency(i) then
‘ return f; = minje(q Cj(hy(4)).

end
end
hi(y) ha(y)
+ The estimator)A‘, has the following hy
property:
- ha
. f>
« f; < f; + 2m/w with probability at ha .
least 1 — (1/2)¢
ha(y) —

ha(y)

CountMin Sketch: Analysis

+ Use w=2/e and d = 1g(1/9).
The estimatorf'l- has the following property:
- fiz i
. f, < fi + em with probability at least 1 — &

« Space. O(dw) = 0(21g(1/8)/e) = O(lg(1/6)/¢) words.

+ Query and processing time. O(d) = O(lg(1/6))

hi(y) ha(y)

h1

h2

ivim
h4 .

hs(y) v

*~ha(y)

Applications of CountMin Sketch

» We can use the CountMin Sketch to solve e.g.:

» Heavy hitters: List all heavy hitters (elements with frequency at least m/k).

» Range(a,b): Return (an estimate of) the number of elements in the stream with

value between a and b.

+ Exercise.
* How can we solve heavy hitters with a single CountMin sketch?

» What is the space and query time?

Dyadic Intervals

» Dyadic intervals. Set of intervals:

{[j%+ LG+ 1)%] |10<i<lgn 0<j<27

Heavy Hitters

« Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

+ On a level: Treat all elements in same bucket/interval as the same element.

Treat
elements
1,2,3,4 as the
same
element.

HE2Ee®E6 60 E 8MMmEE4EME

Heavy Hitters

» Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

« On alevel: Treat all elements in same bucket/interval as the same element.

Actual #elements
that landed in
bucket 1 at level 2

\fz.1
>

1-4

CountMin sketch with
universe [2]. Gives
estimated values of

S faa

CountMin sketch with
universe [4]. Gives
estimated values of

fZ,l’fZ,Z’fZ,}’flA'

CountMin sketch with
universe [8]. Gives
estimated values of

fl.l’ ""fl.S

(@B @6 60 B BiMEEEEE ity

fl).l’ '“’fO.lﬁ

Heavy Hitters

» Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

» On alevel: Treat all elements in same bucket/interval as the same element.

Heavy Hitters

» Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

» On alevel: Treat all elements in same bucket/interval as the same element.

Heavy Hitters

« Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
(same d and w for all sketches).

+ On a level: Treat all elements in same bucket/interval as the same element.

Heavy Hitters

+ Heavy Hitters.
* traverse tree from root.
+ only visit children with estimated frequency > m/k

Heavy Hitters

» Heavy Hitters.
* traverse tree from root.
« only visit children with estimated frequency = m/k

Heavy Hitters

» Heavy Hitters.
« traverse tree from root.
+ only visit children with estimated frequency > m/k

Heavy Hitters

« Heavy Hitters.
« traverse tree from root.
+ only visit children with estimated frequency = m/k

Heavy Hitters

+ Heavy Hitters.
* traverse tree from root.
+ only visit children with estimated frequency > m/k

Heavy Hitters

» Heavy Hitters.
+ Store a CountMin sketch for each level in the tree of dyadic intervals (same d and
w for all sketches).
» On alevel: Treat all elements in same bucket/interval as the same element.
+ To find heavy hitters:
+ traverse tree from root.
+ only visit children with estimated frequency > m/k

* Analysis.
» Time. Assume CountMin sketch makes no large errors.

+ Number of intervals queried: O(k 1g n).
+ Query time: O(klgn - 1g(1/6))

+ Space.

1 1
(0] <lgn -—lg <—)) words.
€ o

Count Sketch

Algorithm 2: CountSketch

Initialize d independent hash functions h; : [n]
Initialize d independent hash functions s; : [n]
Set counter C[j,b] = 0 for all j € [d] and b € [w].
while Stream S not empty do
if Insert(z) then

for j=1...ddo

| Clj, hj(x)] =+ s;(3)
end
else if Frequency(i) then

fu’ = C(E]@)) - 85(1) R

return f;; = median;eq) fi;
end

—
=

[w].
{£1}.

end

Space Error

Count-Min (0] (1 logn eF (one-sided)
€

Count-Sketch | O (lzlog n) | e/ Fy (two-sided)
€

