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Massively Parallel Computation.

P processors each with space S.

Typically S = Nε, and P = N1−ε

Synchronous computation in rounds: computation+communication

Total communication into each processor ≤ S .

Again: local computation is free. We count rounds.

Example implementation: the map-reduce framework.

Warm-up: Assume S = Θ(
√
N), and P = Θ(

√
N).

N numbers are distributed arbitrarily. Compute the sum?

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33

Round 1: Each processor computes its sum, sends to processor 0.

Round 2: Processor 0 computes the whole sum. Done ✓.
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Massively parallel sorting

Sorting as a massive problem?

Input: numbers. 7, 42, 3, 1, 18, 2, 9, 10, 11, 4, 51, 6, 3, 24, 92, 56, 19, 8, 5, 22, 33

Output: number and rank. (7, 8), (42, 18), (3, 3), (1, 1), (18, 13), (2, 2),

(9, 10), (10, 11), (11, 12), (4, 5), (51, 19), (6, 7), (3, 4), (24, 16), (92, 21), (56, 20),

(19, 14), (8, 9), (5, 6), (22, 15), (33, 17)

Input is distributed in any arbitrary way amongst processors

Output we are allowed to distribute arbitrarily, too.

Assume S and P are Θ(
√
N · (logN)c), aka. Θ(

√
N polylog n)

Idea? If only we could make each processor in charge of an interval.

Snag. We just don’t know which intervals are relevant.

Remedy. Use sampling to get a grasp; coordinate in processor 0.
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Massively Parallel Sorting of N elements

Each processor samples each of its numbers with probability 2P lnN
N

and sends these sampled numbers to processor 0.

Processor 0 broadcasts the set of samples to all processors.

What is the total sample size? Expected: 2P lnN

With high probability, ≤ 4P lnN.
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Massively Parallel Sorting: Density Lemma

Let X be the samples from previous slide; i.e. every number is sampled

with probability 2P lnN.

Lemma Consider the input numbers in their sorted order. Consider a

partition of that order into P ranges, containing N/P numbers each.

Then, w. high probability, all such ranges contain at ≥ 1 element from X .

Why? Probability we do not sample some number: 1− 2P lnN
N .

There are N
P in a range. Range empty pb:

(
1− 2P lnN

N

) N
P ≤ e−2 lnN = 1

N2

There are P ranges, and we fail if anyone is empty. Failpb: ≤ P · 1
N2 < 1

N .

I.e. we succeed with probability 1− 1
N .
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Massively Parallel Sorting: The Histogram Trick.

The set X partitions the universe of all numbers into ranges.

Each processor computes its histogram according to these ranges.

Space of histogram?

X numbers. X logN space. ≤ 4P lnN logN i.e. O(P log2 n).

Challenge: We cannot just send all histograms to one processor.
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Massively Parallel Sorting: Global Histogram

Each processor sends count for range i to processor no. i mod P.

Processor i sums counts for its ranges and sends to processor 0.

Processor 0 constructs global histogram.

How many ranges is Processor i responsible for? X/P. O(logN).

Now, Processor 0 computes a set X ′ ⊆ X with the property: Each

range defined by X ′ has O(N/P) numbers; X ′ has size P.

Broadcast to all machines.

(Exists whp by density lemma).
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Massively Parallel Sorting

Processor 0 computes a set X ′ ⊆ X with the property: Each range

defined by X ′ has O(N/P) numbers; X ′ has size P.

Broadcast to all machines.

(Exists whp by density lemma).

Assign each X ′-range to a processor.

Everyone sends numbers from range j to processor j .

Locally sort your own range.

Take global offset (from Processor 0) into account. ✓

How many rounds? O(1).
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