Weekplan: Bloom Filters

Philip Bille Inge Li Ggrtz Eva Rotenberg

References and Reading
[1] Notes on Bloom filters, section 6.1 and 6.2, Jeff Erickson
[2] Scribe notes from Georgia Tech, except sections 4, 5 and 6.
[3] Notes on Discrete Probability, Section 1.1-1.3, Jeff Erickson
[4] Notes on Hashing, Section 5.1-5.4, Jeff Erickson

[5] Network Applications of Bloom Filters: A Survey. Andrei Broder and Michael Mitzenmacher, Internet Mat-
hematics Vol. 1, No. 4: 485-509

[6] Probability and Computing. Michael Mitzenmacher and Eli Upfal. Cambride University Press

We recommend reading the specified sections and sections of [1] and [2] in detail. If your probability theory is a
little rusty we recommend that you read [3]. You can read up on hash functions in [4].

Exercises

1 [w] Bloom filter Let m =17, hy(x) = (x 4+ 15) mod m, hy(x) = (4x + 11) mod m, and h5(x) = (7x +2)
mod m. Insert the keys 23, 7, 50, and 91 into the bit vector, and show the resulting vectors content. Then, find a
key that is a false positive.

2 Expected number of zeroes Let p be the probability that a specific bit b is zero after inserting n elements
in the Bloom filter (we calculated the value of p in class). Let Z be the number of bits in the Bloom filter that are
zero after inserting n elements. Show that the expected value of Z is mp.

3 Union and intersection Suppose you have two Bloom filters F, and Fy representing two sets A and B. The
two bloom filters are created using the same number of bits m and the same k hash functions.

3.1 Let Fyy be a new Bloom filter formed by computing the bitwise OR of F, and Fj. Is this the same as the
Bloom filter constructed by adding the elements of AU B one at a time?

3.2 Let F,yp be the Bloom filter formed by computing the bitwise AND of F, and F. Argue that this is not the
same as the Bloom filter constructed by adding the elements of AN B one at a time.

3.3 Argue that F,yp can be used to check if an element x is in the set AN B with one-sided error. That is, give
an algorithm that always returns TRUE if x € AN B, and explain how we can get false-positives.

4 Dynamic size Bloom filters can easily be halved in size, allowing an application to dynamically shrink a
Bloom filter. Suppose that the size of the filter is a power of 2. To halve the size of the filter, just OR the first and
second halves together. Explain how to to a lookup in the new table.

5 Set differences (from [6]) Bloom filters can be used to estimate set differences. Suppose you have two sets
X and Y representing two peoples 100 favorite songs. Let Fx and Fy be the Bloom filters of the two sets created
using the same number of bits m and the same k hash functions.

5.1 What is the probability that a given bit b is 1 in Fy and 0 in Fy? The answer should be given as a function
of m, k, and | X NY]|.

Hint: The following notation can be useful: For a set S of songs, let bit(S) denote the set of bits that
are one after (only) the elements in S are inserted in the Bloom filter, i.e., bit(S) = {b : dx € S,j €
{1,...,k} such that h;(x) = b}.

5.2 Determine the expected number of bits where the two Bloom filters differ as a function of m, k, and | X NY]|.

5.3 Explain how this could be used as a tool to find people with the same taste in music more easily than
comparing the lists of songs directly.

6 Deletion (from [6]) Suppose that we want to extend Bloom filters to allow deletions as well as insertions of
items into the underlying set. We could modify the Bloom filter to be an array of counters instead of an array of
bits. Each time an item is inserted into a Bloom filter, the counters given by the hashes of the item are increased
by one. To delete an item, one can simply decrement the counters. To keep space small, the counters should be a
fixed length, such as 4 bits.

Explain how errors can arise when using fixed-length counters.

