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Hashing

Universe U,

Range [m] = {0, 1, 2, . . . ,m − 1},

The class of all functions U → [m],

A hash function is a random variable in ↑ that class of functions.

Example: The truly random hash function assigns each x ∈ U to a

uniformly random value in [m], in a way that is independent of all

other values y1, . . . , yi ∈ U, y1 ̸= x , . . . , yi ̸= x .

Question to you: is this the same as choosing uniformly at random

from the class of all functions U → [m]?

Truly random hash function – not very practical. Also much more

powerful than usually necessary. Let’s consider hash functions that

are just good enough. Universal hashing.
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Universal Hashing

Universe U, range [m] = {0, 1, 2, . . . ,m − 1},

Random variable h in the class of all functions U → [m],

Universal means: P[h(x) = h(y)] ≤ 1/m for x ̸= y , x , y ∈ U.

In words: the pairwise collision probability is as low as fully random.

c-approximately universal means P[h(x) = h(y)] ≤ c/m for x ̸= y .

E.g: hashing with chaining. Works with full (utopian) randomness.

Works with universal? Works with O(1)-approximate universal?
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Strong Universality

Universe U, range [m] = {0, 1, 2, . . . ,m − 1},

Random variable h in the class of all functions U → [m],

Strongly universal means bounded probability of pairwise events:

for x ̸= y ∈ U and any q, r ∈ [m], P[h(x) = q ∧ h(y) = r ] = 1/m2

In words: given different values x and y from the universe, all m2

possible outcomes of the pair (h(x), h(y)) are equally likely.

Questions: can a deterministic function be universal? Strongly?

Observation: being strongly universal is equivalent to being:

uniform: h(x) takes each value in [m] with probability 1/m

2-independent: h(x1) is independent of h(x2) for x2 ̸= x1.

c-approximately strongly universal:

c-approximately uniform (probability ≤ c/m)

2-independent (like above).
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Example function: Multiply mod prime [warmup]

Warmup: consider [m] = [p] with p ≥ |U|.

Let a, b be random numbers in [p] = {0, 1, . . . , p − 1}.

Consider the function h̃a,b(x) = ax + b mod p.

What is the probability h̃a,b(x) = q ∧ h̃a,b(y) = r? (x ̸= y .)

ax + b = q and ay + b = r , so a(x − y) = q − r .

Since Z/p is a field, unique a ∈ [p] solves ↑. And then, b unique.

So: Given x , y , every value pair (q, r) corresponds uniquely to a pair

a, b, such that h̃a,b(x) = q ∧ h̃a,b(y) = r . Since each pair (a, b) is

equally likely, all value pairs q, r are equally likely.

Question: We may sometimes choose a = 0. Is this good or bad?
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Example function: Multiply mod prime

We have that h̃a,b(x) : U → [p] is strongly universal.

If, on the other hand, we restrict to a ̸= 0, we have no collisions.

Now, for any m ≤ [p], consider h(x) = h̃a ̸=0,b(x) mod m.

When do we have a collision h(x) = h(y) for x ̸= y?

Let q denote h̃a,b(x) and r denote h̃a,b(y), then the collision

happens when q ≡ r mod m.

For a given q, there are at most ⌈p/m⌉ such values r .

But if a ̸= 0, only ≤ ⌈p/m⌉ − 1 of them can be the value h̃a,b(y).

So, we get
∑

q∈[p] P[h(x) = h(y)|h(x) = q] and we found this was

≤
∑

q∈[p]⌈p/m⌉ − 1; all in all ≤ p · (⌈p/m⌉ − 1) ≤ p(p − 1)/m.

That ↑ many collision pairs out of (p − 1)× p choices for a, b

gives collision probability ≤ p(p−1)/m
p(p−1) = 1/m.
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