Hashing

Philip Bille Inge Li Gørtz Eva Rotenberg

Hashing

- Universe *U*,
- Range $[m] = \{0, 1, 2, \dots, m-1\},\$
- The class of all functions $U \rightarrow [m]$,
- A hash function is a random variable in \uparrow that class of functions.
- Example: The truly random hash function assigns each x ∈ U to a uniformly random value in [m], in a way that is independent of all other values y₁,..., y_i ∈ U, y₁ ≠ x,..., y_i ≠ x.
- Question to you: is this the same as choosing uniformly at random from the class of all functions $U \rightarrow [m]$?
- Truly random hash function not very practical. Also much more powerful than usually necessary. Let's consider hash functions that are just good enough. Universal hashing.

- Universe *U*, range $[m] = \{0, 1, 2, ..., m 1\}$,
- Random variable h in the class of all functions $U \rightarrow [m]$,
- Universal means: $P[h(x) = h(y)] \le 1/m$ for $x \ne y, x, y \in U$.
- In words: the pairwise collision probability is as low as fully random.
- *c*-approximately universal means $P[h(x) = h(y)] \le c/m$ for $x \ne y$.
- E.g: hashing with chaining. Works with full (utopian) randomness. Works with universal? Works with *O*(1)-approximate universal?

Strong Universality

- Universe *U*, range $[m] = \{0, 1, 2, \dots, m-1\}$,
- Random variable h in the class of all functions $U \rightarrow [m]$,
- Strongly universal means bounded probability of pairwise events:
 for x ≠ y ∈ U and any q, r ∈ [m], P[h(x) = q ∧ h(y) = r] = 1/m²
- In words: given different values x and y from the universe, all m² possible outcomes of the pair (h(x), h(y)) are equally likely.
- Questions: can a deterministic function be universal? Strongly?
- Observation: being strongly universal is equivalent to being:
 - <u>uniform</u>: h(x) takes each value in [m] with probability 1/m
 - 2-independent: $h(x_1)$ is independent of $h(x_2)$ for $x_2 \neq x_1$.
- *c*-approximately strongly universal:
 - *c*-approximately uniform (probability $\leq c/m$)
 - 2-independent (like above).

Example function: Multiply mod prime [warmup]

- Warmup: consider [m] = [p] with $p \ge |U|$.
- Let a, b be random numbers in $[p] = \{0, 1, \dots, p-1\}$.
- Consider the function $\tilde{h}_{a,b}(x) = ax + b \mod p$.
- What is the probability $ilde{h}_{a,b}(x) = q \wedge ilde{h}_{a,b}(y) = r? ~(x
 eq y.)$
- ax + b = q and ay + b = r, so a(x y) = q r.
 Since Z/p is a field, unique a ∈ [p] solves ↑. And then, b unique.
- So: Given x, y, every value pair (q, r) corresponds uniquely to a pair a, b, such that $\tilde{h}_{a,b}(x) = q \wedge \tilde{h}_{a,b}(y) = r$. Since each pair (a, b) is equally likely, all value pairs q, r are equally likely.
- Question: We may sometimes choose a = 0. Is this good or bad?

Example function: Multiply mod prime

- We have that $\tilde{h}_{a,b}(x): U \to [p]$ is strongly universal.
- If, on the other hand, we restrict to $a \neq 0$, we have no collisions.
- Now, for any $m \leq [p]$, consider $h(x) = \tilde{h}_{a \neq 0,b}(x) \mod m$.
- When do we have a collision h(x) = h(y) for $x \neq y$?
- Let q denote $\tilde{h}_{a,b}(x)$ and r denote $\tilde{h}_{a,b}(y)$, then the collision happens when $q \equiv r \mod m$.
- For a given q, there are at most $\lceil p/m \rceil$ such values r.
- But if $a \neq 0$, only $\leq \lceil p/m \rceil 1$ of them can be the value $\tilde{h}_{a,b}(y)$.
- So, we get $\sum_{q \in [p]} P[h(x) = h(y)|h(x) = q]$ and we found this was $\leq \sum_{q \in [p]} \lceil p/m \rceil 1$; all in all $\leq p \cdot (\lceil p/m \rceil 1) \leq p(p-1)/m$.
- That ↑ many collision pairs out of (p − 1) × p choices for a, b gives collision probability ≤ p(p−1)/m / p(p−1) = 1/m.