
Massively Parallel 2

Eva Rotenberg

Eva Rotenberg Massively Parallel 2



Bor̊uvka’s algorithm.

Let T be a minimum spanning tree in some graph G .

A T -fragment is a connected subgraph of T .

Idea: build T by iteratively concatenating fragments.

Beginning: Each point is a fragment.

Step: For each fragment X , let e = (x , y) be the cheapest edge

between X and G \ X . Use e, combine X with Y (y ∈ Y ).

Analysis:

Correct? The cheapest edge of a cut belongs to an MST.

How many steps? After i iterations, each fragment ≥ 2i vertices.

Question: Can we use this idea to compute spanning trees in Congest?

Can we use this idea to compute spanning trees in parallel?

Eva Rotenberg Massively Parallel 2



Massively parallel minimum spanning tree computation

Graph G has N vertices and M edges,

S =
√
N (small), P = Õ(M/S) (many).

Challenges with implementing Bor̊uvka?

Representing the state

Implement one ”step” in constant many rounds

Representing the state: Represent each fragment by, say, lowest ID node

in fragment.

Machine storing edge uv should be able to find fragment of u and of v .

Note: many machines.

Eva Rotenberg Massively Parallel 2



Two hints for parallel Bor̊uvka

Challenge: In one step, newly joining edges and their components

may form a long chain.

X → Y → Z → . . .

To avoid this, use randomisation:

Every fragment chooses a random colour (yellow, green)

A smallest edge is only ‘valid’ if it goes from yellow to green.

In each round, add only ‘valid’ edges.

Probability 1/4 an edge is valid; slows down by a constant factor.

Now, the green fragment coordinates the merge with (possibly

many) yellow fragments.

Challenge: A fragment does not fit into one machine, and the

number of edges it receives even less so.

Build aggregation trees: 4
√
N-ary rooted trees;

Edges arrive at the leaves and are filtered towards the root.

Filtering: Only the smallest edge is relevant.

Eva Rotenberg Massively Parallel 2



Graph sketching (sketching cuts, connectivity)

S = Õ(N), P0 coordinates.

Warm-up: an edge from a cut.

Assume you have a graph G and a subset A of the vertices of G .

Every vertex knows whether it itself is in A, and knows the names of

its edges vu.

Find an edge crossing the cut from A to not-A?

What if the cut is one edge?Every vertex of A sends xor of their

edges to P0. Then P0 xors those and gets name of edge.

What if there are between k/2 and k edges crossing the cut?Use

predefined hashing function to sample with probability 1/k.

Note: should be coordinated! Vertices u and v either both sample or

not-sample uv

Expect 1/2 to 1 edge across the cut to be sampled. With constant

probability, we have sampled exactly one edge across the cut.

Challenge: Did we succeed?
Eva Rotenberg Massively Parallel 2



Graph sketching

Idea: if we know how many edges cross a cut, we can use coordinated

sampling to find such an edge with constant probability.

Challenge: did we succeed?

Idea: Name of edge uv is u, v , Ruv ,

where Ruv is a random string of Θ(log n) bits (say, 80 log n), each bit is 1

with probability 1/8.

Then the number of 1-bits is highly concentrated around its expected

value, (less than 14 ln n w.h.p)

and because the 1s are so sparse, it is very likely that if we xor two

Re ̸= Re′ the result has many more 1s. (more than 14 ln n w.h.p)

if we xor even more we get even closer to half of the bits being 1.

Details: exercise.

Eva Rotenberg Massively Parallel 2



Sketching Connectivity

Setup: S = Õ(N) and P0 coordinates. Wish to find spanning tree.

We can detect cut of size ca. k (e.g. k/2 to k) with constant probability.

Repeat log n times to get high probability.

Repeat for log n guesses for k : 1, 2, 4, 8, 16, 32, etc.

Bor̊uvka? (log n rounds.)

Use cut-sketching to find an edge crossing from fragment to

rest-of-graph.

Every vertex samples log n · log n · log n edges. (That is, log4 n bits)

Send those to P0, then P0 can simulate entire Bor̊uvka and get a

spannning tree.

Eva Rotenberg Massively Parallel 2


