
Weekplan: Streaming III

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] Inge Li Gørtz. Lecture notes on the CountMin sketch.

[2] An improved data stream summary: the count-min sketch and its applications, G. Cormode and S. Mut-
hukrishnan, J. Algorithms, Volume 55, Issue 1, April 2005, Pages 58-75

[3] Amit Chakrabarti: Data Stream Algorithms 2011 (updated July 2020) Section 5.5, 5.2, and 5.4.

We recommend reading [1] and [2] (except section 5.1) in detail. [3] is supplementary reading.

Exercises

1 Range queries with a single CountMin sketch In this exercise we consider range queries of the form:

• range(a, b): Return an estimate for the number of elements with value between a and b (both included).

Explain how we can use a single CountMin sketch to solve range queries. What is the query time and how large
is the expected error?

2 Range queries In this exercise we will use the tree of dyadic intervals to give a sketch for range queries. We
maintain a separate CountMin sketch for each level in the tree, where for level j the jth CountMin sketch treats
two elements that fall into the same interval in level j as the same element. For all intervals i in the tree, let C(i)
denote the value that the appropriate CountMin sketch returns for i.

2.1 Show that any interval in the range from 1 to n can be expressed as the disjoint union I of at most 2 lg n
dyadic intervals. Hint: Use the tree.

2.2 Explain how to use I to return an estimate for the range query range(a, b).

2.3 We want to have an additive error of at most εm as in the original CountMin sketch. Let f[a,b] be the total

frequency of the elements in the range [a, b]. Show that if we set w = 2 lg n
ε in all the CountMin sketches

then the expected error is εm, that is E
�∑

i∈I C(i)
�

≤ f[a,b] + εm.

2.4 What is the total space and query time? (we still use d = lg 1
δ ).

3 Combine Given two streams S1 and S2 and the CountMin sketches CM1 and CM2 of the two streams, explain
how to combine the two sketches to get a sketch for the stream S1 ∪ S2.

What do you need to assume about the two CountMin sketches for this to work?
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4 Idea behind CountSketch Consider the following simple algorithm algorithm for finding estimates of all fi .
Let s be a pairwise independent hash function from [n] to {−1, 1} and let c be a counter. While processing the
stream, each time we encounter an item i, update the counter c = c + s[i]. When answering a query we return
f̂i = c · s[i].

4.1 Compute the expected value of s[ j] for j ∈ [n].

4.2 Show that f̂i = fi +
∑

j ̸=i f j · s[ j] · s[i].

4.3 For two independent random variables X and Y we have: E[X Y ] = E[X ] · E[Y ]. Use this and linearity of
expectation to show that E[ f̂i] = fi .

The variance of this algorithm is very large and many elements have estimates that are wrong by more than the
variance. In the CountSketch algorithm there are t hash functions h j : [n]→ [w] and t hash functions s j : [n]→
{−1, 1} and a t ×w array of counters. The counters in row j are saved in array C j . When an element q arrives the
data structure is update by setting C j[h j[q]]+ = s j[q] for all j ∈ [t]. To estimate the frequency of element q return
median j{C j[h j[q]] · s j[q]}.

5 Heavy hitters using a single CountMin sketch

Heavy hitters Recall an element i in a stream is a heavy hitter if it has frequency fi > m/k for some given k. We
define an infrequent element to be an element with frequency less than m

2k .

In this exercise we will use a single CountMin sketch and a binary min heap to get a streaming algorithm that
outputs heavy hitters. The goal is to get an algorithm that returns all heavy hitters and with probability 1 − γ
returns no infrequent elements. The algorithm should be space and time efficient.

The algorithm will use a binary min heap to maintain some of the most frequent elements seen so far. Every
time an element is encountered the algorithm updates the CountMin sketch and the heap. By the end of the stream
the algorithm outputs all elements in the heap that has an estimated frequency more than m/k.

5.1 Explain how to update the heap when an element is encountered in the stream to ensure all heavy hitters
are output. Remember to argue that your algorithm is correct.

5.2 We want to choose an error probability δ in the CountMin sketch such that the probability of the algorithm
outputting an element with frequency fi < (1/k− ε)m is bounded by γ. Show that this can be obtained by
setting δ = γ/n.

5.3 We want to ensure that with probability at least 1−γ the algorithm outputs no infrequent element. Explain
how we can obtain this.

5.4 Let X be the number of elements with estimated frequency greater than m/k. Argue that E[X ]≤ 2k+ n · γ.
What should γ be if we want E[X ] = O(k)?

5.5 What is the update time and expected space usage of your algorithm? What is the time complexity for
reporting the heavy hitters?
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