Streaming

Inge Li Gørtz

Streaming model (one-pass)

• Stream.

- Elements $a_1, a_2, ..., a_m$ from the universe $[n] = \{1, 2, ..., n\}$.
- · Elements arrive one by one.
- Must process element a_i before we see a_{i+1} .

- Space. Measured in bits.
- Goal. Small space (sublinear/polylogarithmic).
- Example. What can we do in $O(\log n + \log m)$ space?

Today

- Streaming model
- Frequent Elements (Misra-Gries)
- Reservoir Sampling

Frequent elements

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

• Bad news. Need $\Omega(n)$ space for one-pass algorithm.

Good news.

- · Can estimate the frequency.
- · Can do better if we allow one-sided error:
 - Output all elements that occur more than m/k times.
 - Might also output other elements.

Misra-Gries Analysis

- Lemma. Any item with frequency more than m/k is in A by the end of the algorithm.
- Lemma. Let \hat{f}_i be the estimate of the frequency of element i. Then

$$f_i - \frac{m}{k} \le \hat{f}_i \le f_i \ .$$

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 ↑ counter 1: 4 , 2 counter 2: 1 , 1	3 4 1 4 4 1 1 2 4 1 3 4 5 9 4	Decrements

Reservoir Sampling

Reservoir Sampling

• Algorithm.

put the first *k* elements into a "reservoir" $R = \{r_1, r_2, ..., r_k\}$. for i > k until the stream is empty do with probability k/i replace a random entry of R with a_i Return R.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- Proof. Consider element *a_i*.
 - $P[a_i \text{ chosen at time } i] = k/i$.
 - $P[a_i \text{ replaced at time } j] = (k/j) \cdot (1/k) = 1/j$.
 - $P[a_i \text{ not replaced at time } j] = 1 1/j = (j 1)/j$.
 - Thus

$$P[a_i \in R_t] = \frac{k}{i} \cdot \frac{i}{i+1} \cdot \frac{i+1}{i+2} \cdots \frac{t-1}{t} = \frac{k}{t}$$