Streaming

Inge Li Gortz

Today

+ Streaming model
+ Frequent Elements (Misra-Gries)
* Reservoir Sampling

Streaming model (one-pass)

+ Stream.
« Elements a,, a,, ..., a,, fromthe universe [n] = {1.,2,...,n}.
+ Elements arrive one by one.

+ Must process element ¢, before we see a; ;.

+ Space. Measured in bits.

+ Goal. Small space (sublinear/polylogarithmic).

« Example. What can we do in O(log n + log m) space?

Frequent elements

Frequent elements

+ Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

+ Example. Return all elements that occur more than 21/3 times = 7.

[4]4[1]2[a]4]s]+]1]2]s[o]7]]1[a] 4] 1[4]4]1]

Frequent elements

+ Heavy Hitters Problem. Find all elements j that occurs more than m/k times for some
fixed k.

» Example. Return all elements that occur more than 21/3 times = 7.

[l |2 [alala] 1 [2]s o[]+ [o] « [l < |

Frequent elements

+ Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

+ Example. Return all elements that occur more than 21/3 times = 7.

(el |2 [alala]] [2]s o]] 1 o]a « [afa] « |

+ Bad news. Need Q(n) space for one-pass algorithm.
+ Good news.
+ Can estimate the frequency.
+ Can do better if we allow one-sided error:
+ Output all elements that occur more than m/k times.

» Might also output other elements.

Frequent elements

+ Example. k = 3.

[+al[2]][2e]o] 4
!

counter 1: ' 2

counter2:], 1

Keep k-1 counters in an associative array A.
while (stream is not empty) do
If j € keys(A) then
Alj] <ALl +1
else if |keys(A)| < k — 1 then
Alj] < 1
else
Decrement all counters by 1.

Remove all elements with counter 0.
Space. O(k (log n+ log m)) Output all elements in keys(A)

Misra-Gries Analysis

+ Lemma. Any item with frequency more than m/k is in A by the end of the algorithm.

« Lemma. Letfl- be the estimate of the frequency of element i. Then

- <fi<h

: o[7|43

counter 1: . , 2

counter 2: . 1 -
[al4]
ECH

Decrements

Reservoir Sampling

Reservoir Sampling

+ Algorithm.

put the first k elements into a “reservoir” R = {ry, 15, ..., 13}
for i > k until the stream is empty do

with probability k/i replace a random entry of R with g;
Return R.

- Claim. Forall t > i, Pla; € R,] = k/t, where R, denotes the reservoir after time t.
« Proof. Consider element a;.

+ P[a; chosen at time i] = k/i.

« Pla, replaced at time j] = (k/j) - (1/k) = 1/j.

« Pla;not replaced attimej] =1 - 1/j = (j = 1)/j.

* Thus

k i i+1 =1 &k
Pla,€R) =~ —— ol =
i i+1 i+2 t t

