Distance Oracles

Christian Wulff-Nilsen
Algorithmic Techniques for Modern Data Models
DTU

September 12, 2025

Overview for today

- Shortest paths and distance oracles
- Approximate distance oracles
- A special case of the Thorup-Zwick approximate distance oracle
- The general Thorup-Zwick oracle:
 - Bounding space
 - Bounding stretch

The shortest path problem

• The shortest path problem:

Our problem

- For an edge-weighted graph G=(V,E), let $\delta(s,t)$ be the shortest path distance in G from $s\in V$ to $t\in V$
- We want a data structure for G that can answer queries of the form "What is $\delta(s,t)$?" for any $s,t\in V$

Approximate distances

- Let n = |V|
- It can be shown that in the worst case, $\Theta(n^2)$ space is the best we can hope for if we want exact distances
- We therefore consider *approximate* shortest path distances

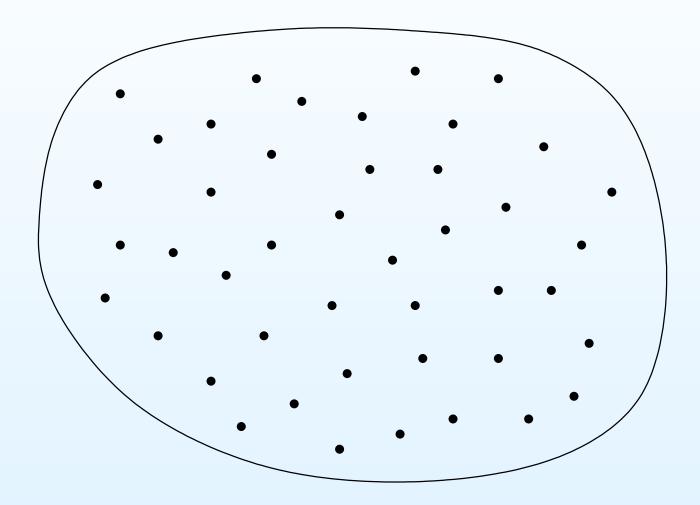
Approximate distance oracle

• For any $u,v\in V$, $\tilde{\delta}(u,v)$ is an estimate of $\delta(u,v)$ of stretch $t\geq 1$ if

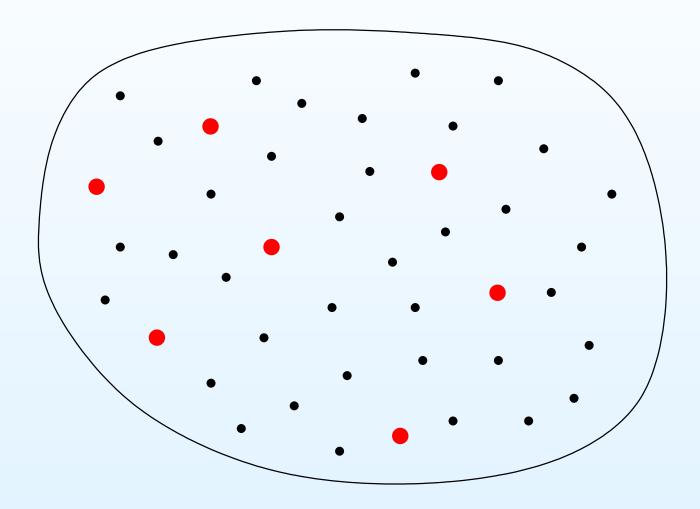
$$\delta(u, v) \le \tilde{\delta}(u, v) \le t \cdot \delta(u, v)$$

- *t*-approximate distance oracle:
 - \circ Answers queries with estimates of stretch t
 - Should preferably use a small amount of space
- From now on, we consider only *undirected* edge-weighted graphs since for any stretch t, $\Theta(n^2)$ space is the best we can hope for for directed graphs

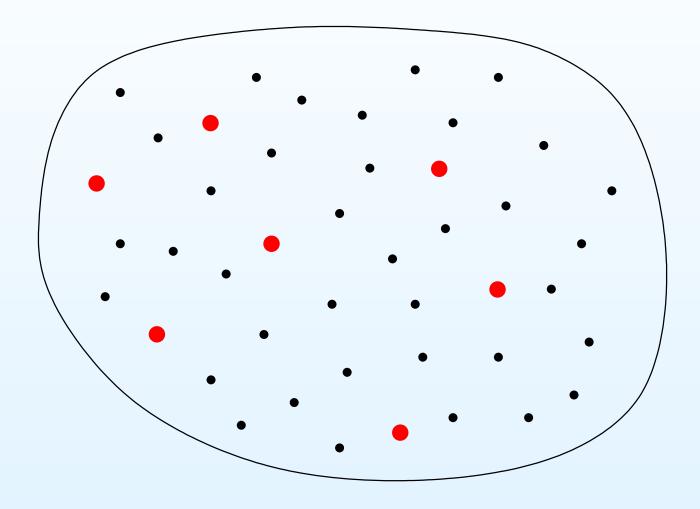
• Sample each vertex independently with some probability p:



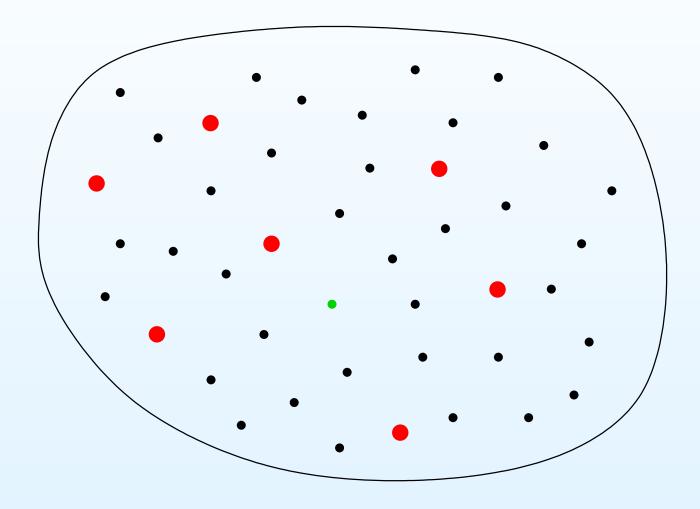
• Sample each vertex independently with some probability p:



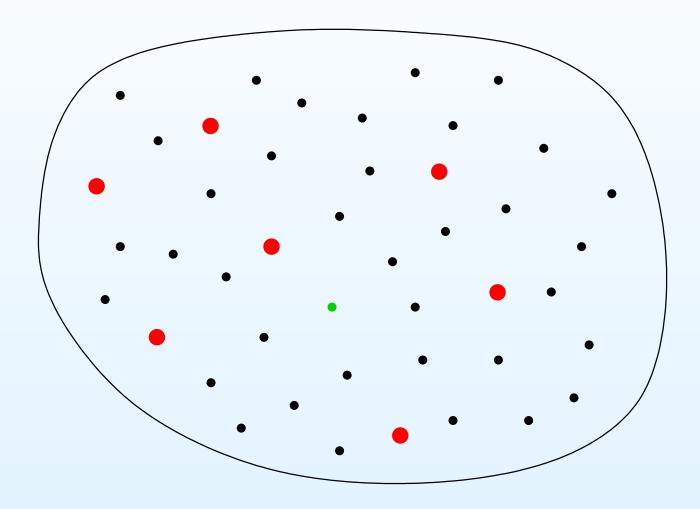
• For each vertex:



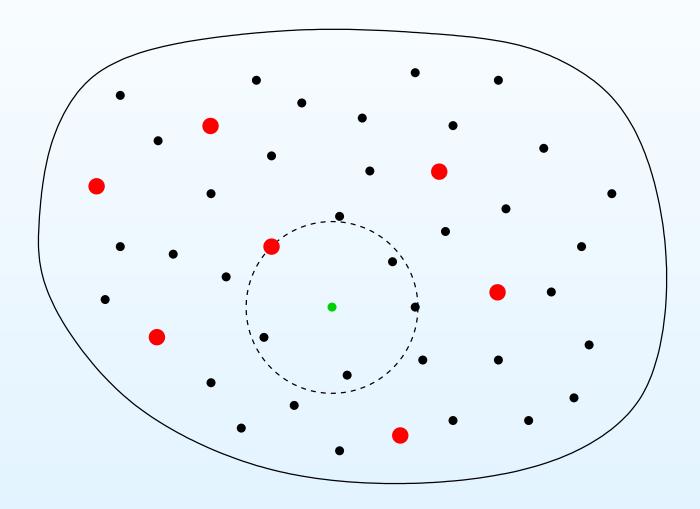
• For each vertex:



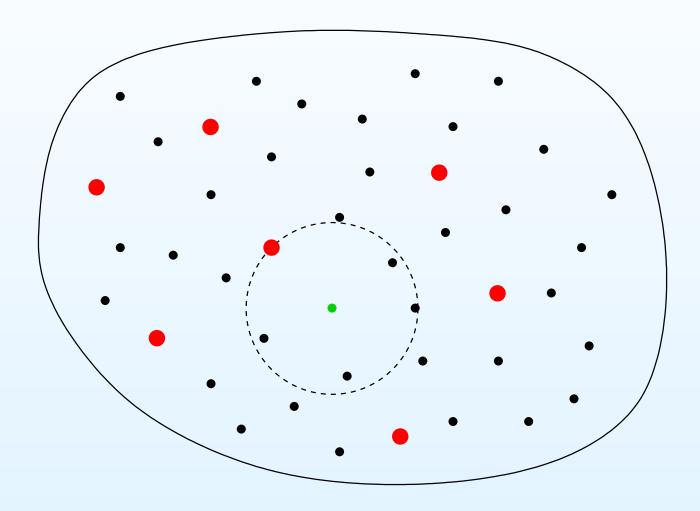
• Consider vertices closer than nearest sampled vertex:



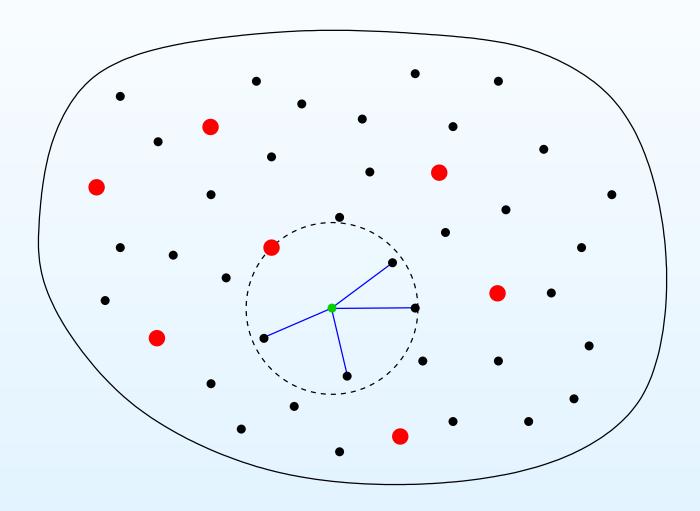
• Consider vertices closer than nearest sampled vertex:



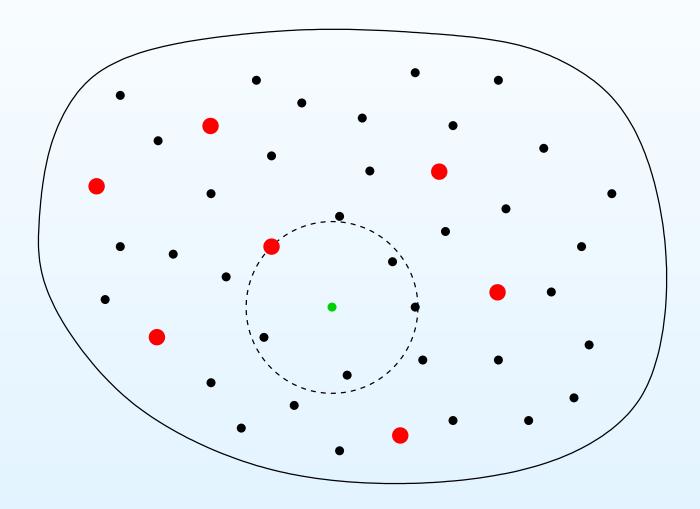
• Compute and store distances to these vertices:



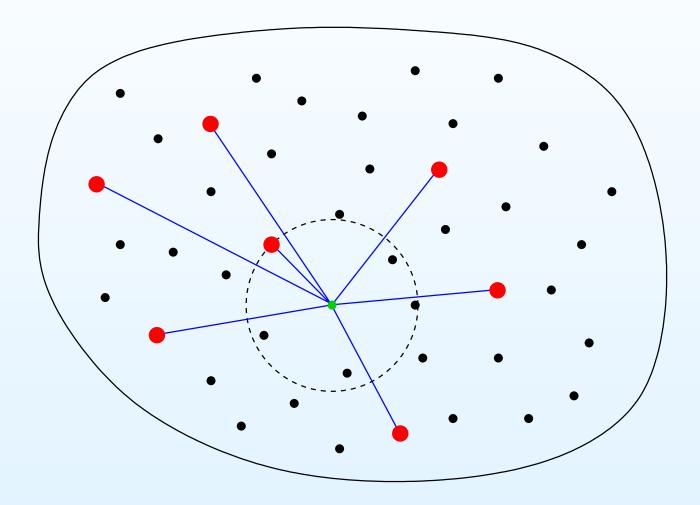
• Compute and store distances to these vertices:



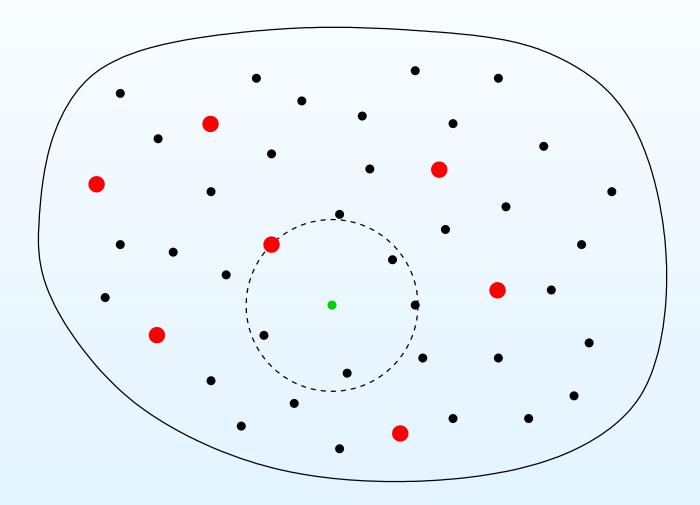
Compute and store distances to all sampled vertices:



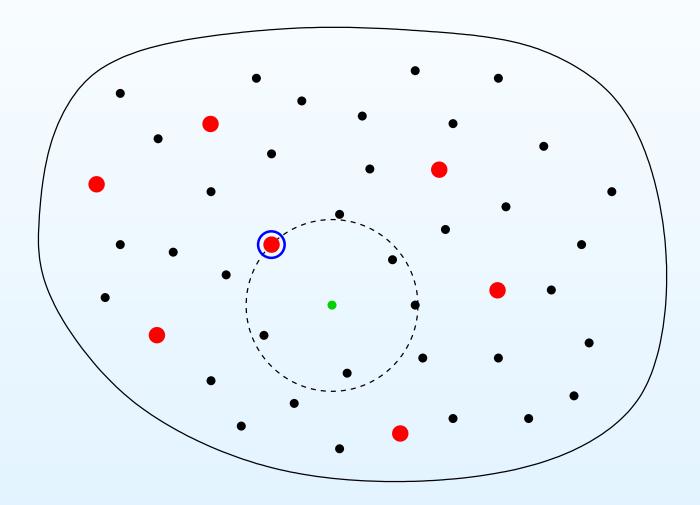
• Compute and store distances to all sampled vertices:



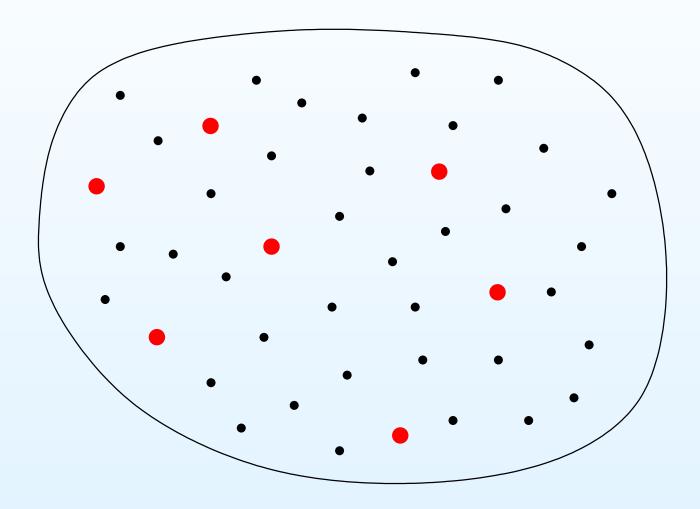
• Store the nearest sampled vertex:



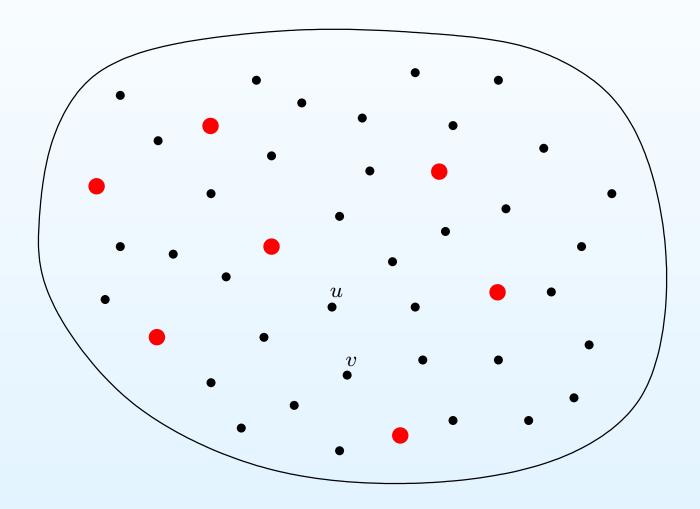
• Store the nearest sampled vertex:



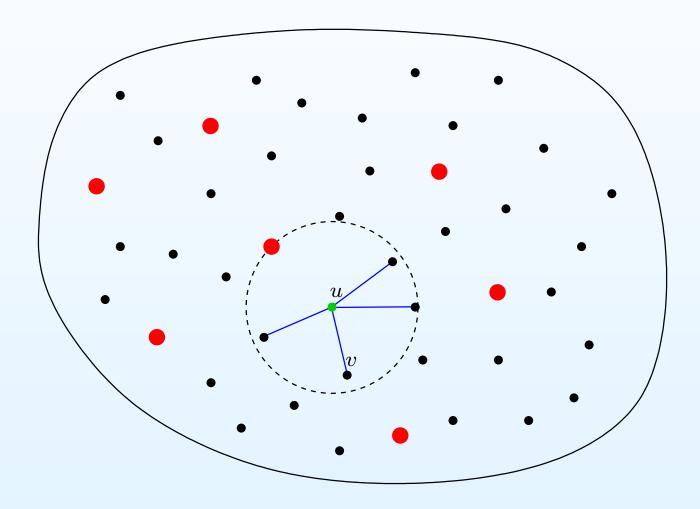
• To answer a query for the distance between u and v:



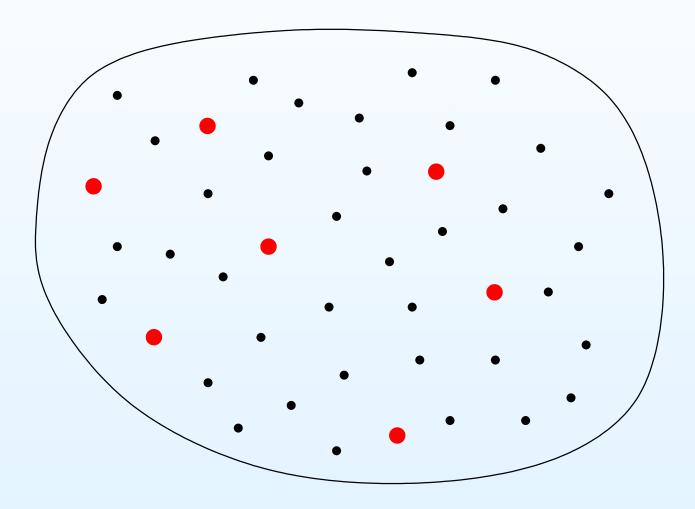
• To answer a query for the distance between u and v:



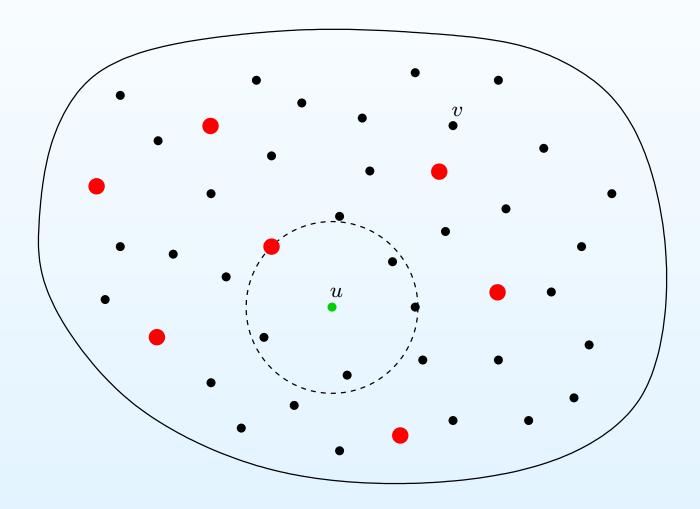
• Simple look-up if v is closer to u than nearest sampled vertex:



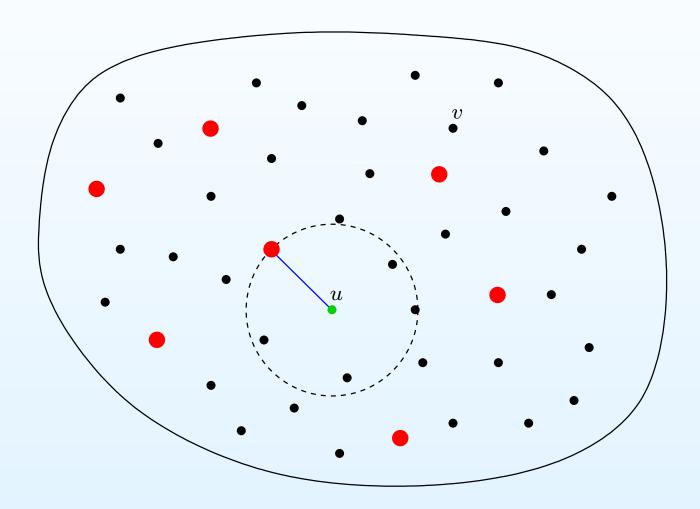
• Simple look-up if v is closer to u than nearest sampled vertex:



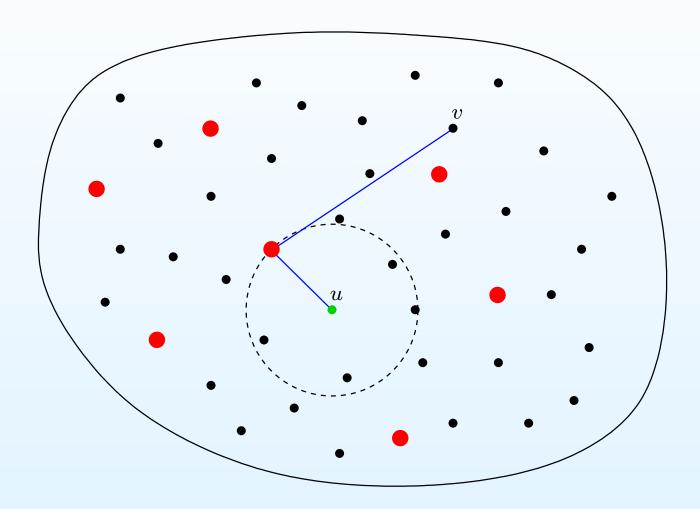
• Consider the opposite case:



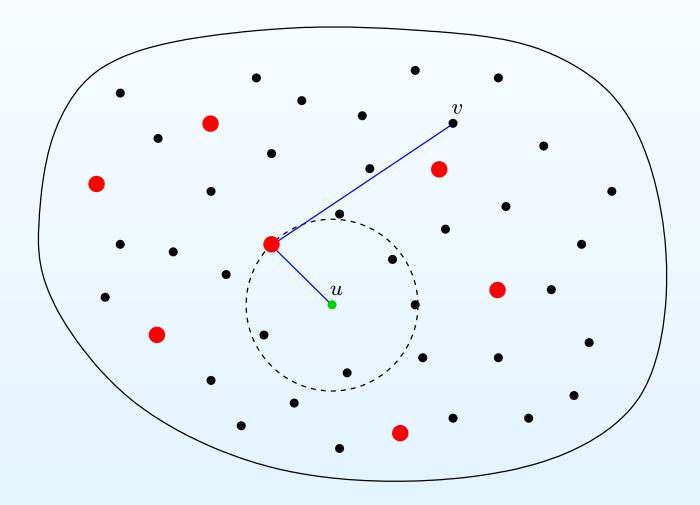
ullet We stored the nearest sample to u and the distance between them:



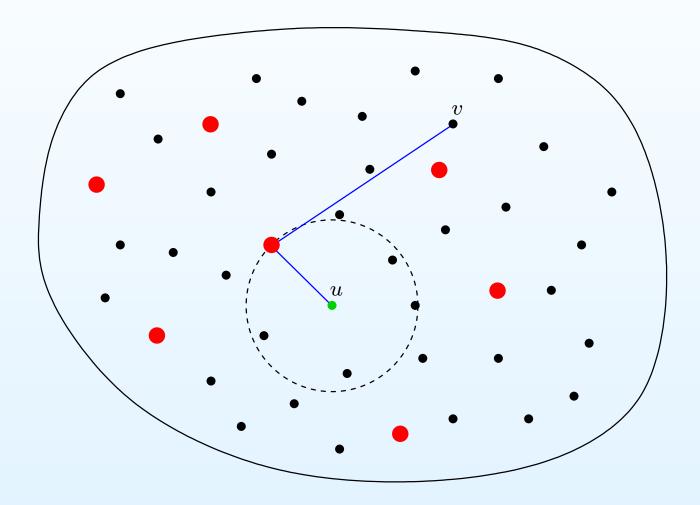
• And we stored the distance between \boldsymbol{v} and this sampled vertex:



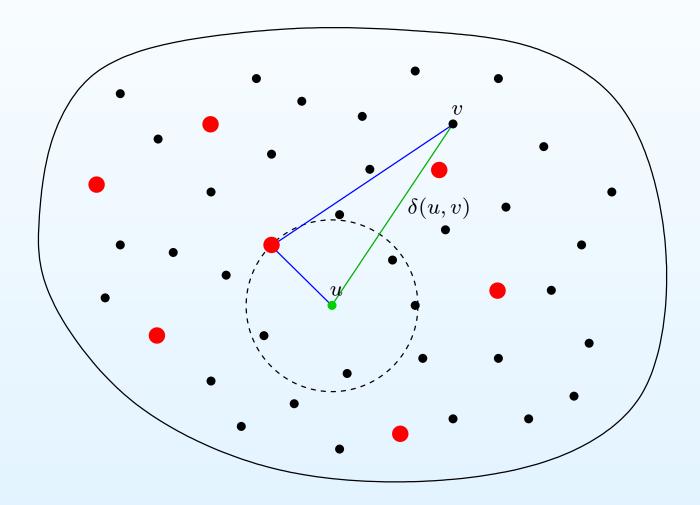
• The oracle returns the sum of these two distances:



• This estimate has stretch 3 (exercise)



• This estimate has stretch 3 (exercise)



Analyzing space of the approximate distance oracle

ullet Letting S be the sampled vertices, the oracle stores:

Part I: $\delta(s, v)$ for all $s \in S$ and all $v \in V$

Part II: $\delta(u,v)$ for all $u \in V$ and all v closer to u than u's nearest

 $\quad \text{vertex in } S$

Part I: $\delta(s,v)$ for all $s\in S$ and all $v\in V$

• Since each $v \in V$ is sampled independently with probability p,

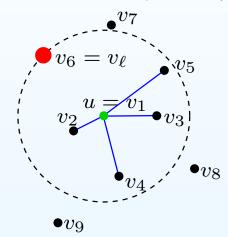
$$E[|S|] = np$$

Expected space for Part I is thus

$$E[|V||S|] = E[n|S|] = nE[|S|] = O(n^2p)$$

Part II: $\delta(u,v)$, all $u\in V$, v closer to u than u's nearest S-vertex

- For $u \in V$, consider all $v \in V$ in non-decreasing distance to u: v_1, v_2, \ldots, v_n where $v_1 = u$
- Let ℓ be the smallest index such that $v_{\ell} \in S$ (assume ℓ exists)



- ullet The number of distances stored from u is $\ell-1<\ell$
- \bullet Need to calculate the expected space which is less than $E[\ell]$
- Consider a coin with probability p of heads
- Finding \(\ell \) corresponds to:
 - \circ Flipping the coin for v_1 , then for v_2 , etc.
 - \circ Stopping once it lands on heads; ℓ is the number of coin tosses
- ullet has the geometric distribution with parameter p so $E[\ell]=1/p$
- Expected space for Part II: $O(n \cdot E[\ell]) = O(n/p)$

Total space of oracle

 We have shown that Parts I and II of the oracle require a total expected space of

$$O\left(n^2p + \frac{n}{p}\right)$$

$$n^2p = \frac{n}{p} \Leftrightarrow p^2 = \frac{1}{n} \Leftrightarrow p = \frac{1}{\sqrt{n}}$$

- This optimal choice of p gives space $O(n^{3/2})$
- Is this space bound measured in words or bits?

The Thorup-Zwick Oracle

- We have seen a 3-approximate distance oracle requiring $O(n^{3/2})$ space and O(1) query time
- Thorup, Zwick, 2001: for any $k \in \mathbb{N}$, there is an oracle with
 - $\circ O(kn^{1+1/k})$ space,
 - \circ O(k) query time,
 - \circ stretch 2k-1
 - \circ $O(kmn^{1/k})$ construction time (not covered in the course)

Examples:

- \circ k=1: $O(n^2)$ space and stretch 1 (exercise)
- \circ k=2: $O(n^{3/2})$ space and stretch 3 (previous slides)
- \circ k=3: $O(n^{4/3})$ space and stretch 5
- Trade-off between space and stretch is conjectured to be essentially optimal
- We now present and analyze this oracle

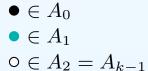
Sampling on multiple levels

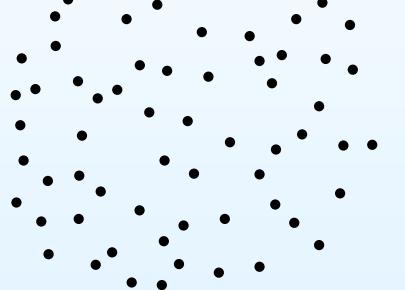
• Define sampled subsets A_0, \ldots, A_k of V as follows:

$$\circ A_0 = V$$

- \circ For $i=1,\ldots,k-1$, A_i is obtained from A_{i-1} by sampling each of its vertices independently with some probability p
- $\circ A_k = \emptyset$

• Example with k = 3:





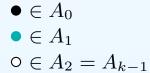
Sampling on multiple levels

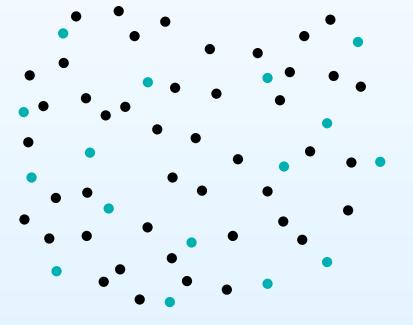
• Define sampled subsets A_0, \ldots, A_k of V as follows:

$$\circ A_0 = V$$

- \circ For $i=1,\ldots,k-1$, A_i is obtained from A_{i-1} by sampling each of its vertices independently with some probability p
- $\circ A_k = \emptyset$

• Example with k = 3:





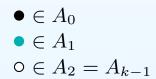
Sampling on multiple levels

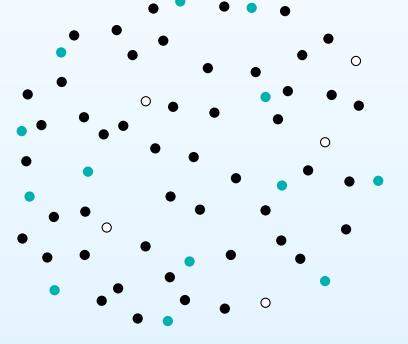
• Define sampled subsets A_0, \ldots, A_k of V as follows:

$$\circ A_0 = V$$

- \circ For $i=1,\ldots,k-1$, A_i is obtained from A_{i-1} by sampling each of its vertices independently with some probability p
- $\circ A_k = \emptyset$

• Example with k = 3:





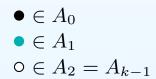
Sampling on multiple levels

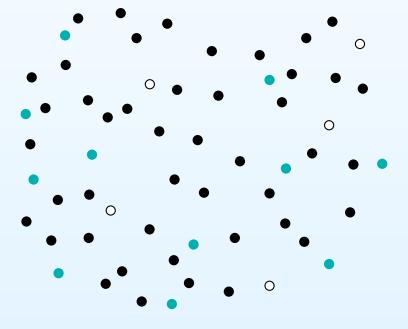
• Define sampled subsets A_0, \ldots, A_k of V as follows:

$$\circ A_0 = V$$

- \circ For $i=1,\ldots,k-1,$ A_i is obtained from A_{i-1} by sampling each of its vertices independently with some probability p
- $\circ A_k = \emptyset$

• Example with k = 3:





• Note that this matches what we did in the 3-approximate distance oracle where k=2

Distance to a Set

• For $u \in V$ and $i = 0, \dots, k$, define

$$\delta(u, A_i) = \min_{v \in A_i} \delta(u, v)$$

where $\delta(u, A_i) = \infty$ if $A_i = \emptyset$

- If $A_i \neq \emptyset$, let $p_i(u)$ be a closest vertex to u in A_i
- Note that $\delta(u, p_i(u)) = \delta(u, A_i)$

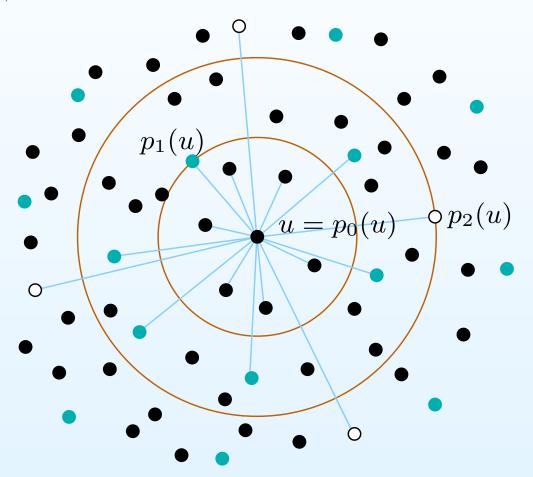


Bunches

- Bunch B(u) contains the vertices in A_i that are closer to u than $\delta(u,A_{i+1}), i=0,\ldots,k-1$
- Example with k = 3:

- $\bullet \in A_0$
- $\bullet \in A_1$

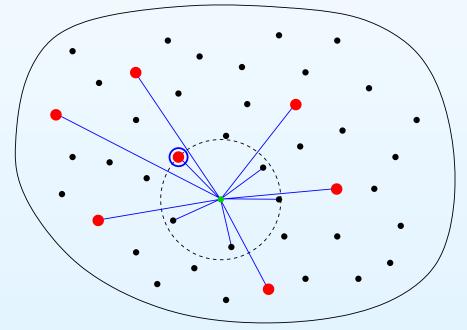
$$0 \in A_2 = A_{k-1}$$



• Observe $A_k = \emptyset \Rightarrow \delta(u, A_k) = \infty \Rightarrow A_{k-1} \subseteq B(u)$

Information stored by the (2k-1)-approximate distance oracle

- For each $u \in V$, the oracle stores
 - \circ B(u) (hash table),
 - $p_i(u) \text{ for } i = 1, 2, \dots, k-1,$
 - $\circ \quad \delta(u,v) \text{ for each } v \in B(u)$
- This matches what we store for our 3-approximate distance oracle where k=2:



Space for oracle is bounded by total space for all bunches

Space used

• We will show that for each $u \in V$

$$E[|B(u)|] = O(k/p + np^{k-1})$$

• Picking $p = n^{-1/k}$ then gives

$$E[|B(u)|] = O(k/n^{-1/k} + n \cdot (n^{-1/k})^{k-1})$$
$$= O(kn^{1/k} + n^{1/k})$$
$$= O(kn^{1/k})$$

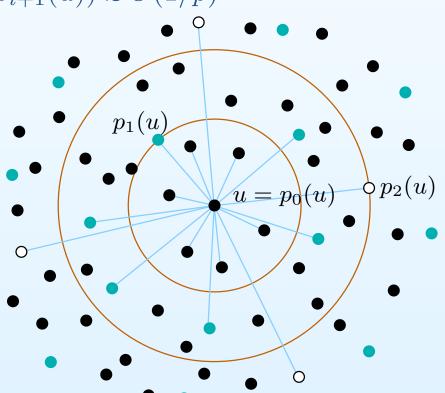
By linearity of expectation, the total expected space is

$$E\left[\sum_{u \in V} |B(u)|\right] = \sum_{u \in V} E[|B(u)|] = O(kn^{1+1/k})$$

Showing $E[|B(u)|] = O(k/p + np^{k-1})$

- Recall: p is the probability that a vertex in A_i is sampled and included in A_{i+1} , $i=0,\ldots,k-2$
- Analysis for 3-approximate oracle: the expected number of vertices in A_0 closer to u than $\delta(u,A_1)$ is O(1/p)
- Generalizing to $i=0,\ldots,k-2$, the expected number of vertices in A_i closer to u than $\delta(u,p_{i+1}(u))$ is O(1/p)

- $\bullet \in A_0$
- $\bullet \in A_1$
- $0 \in A_2 = A_{k-1}$



Showing $E[|B(u)|] = O(k/p + np^{k-1})$

- Recall: p is the probability that a vertex in A_i is sampled and included in A_{i+1} , $i=0,\ldots,k-2$
- Analysis for 3-approximate oracle: the expected number of vertices in A_0 closer to u than $\delta(u,A_1)$ is O(1/p)
- Generalizing to $i=0,\ldots,k-2$, the expected number of vertices in A_i closer to u than $\delta(u,p_{i+1}(u))$ is O(1/p)
- This is a total of (k-1)O(1/p) = O(k/p)
- Bunch B(u) also contains A_{k-1} whose expected size is

$$E[|A_{k-1}|] = np^{k-1}$$

since a vertex of V is in A_{k-1} if and only if it is sampled independently k-1 times in a row with probability p

• Thus, $E[|B(u)|] = O(k/p + np^{k-1})$ as desired

$$\begin{aligned}
\operatorname{dist}_{k}(u, v) \\
1 & w \leftarrow u, i \leftarrow 0 \\
2 & \operatorname{while} w \notin B(v) \\
3 & i \leftarrow i + 1 \\
4 & (u, v) \leftarrow (v, u) \\
5 & w \leftarrow p_{i}(u) \\
6 & \operatorname{return} \delta(w, u) + \delta(w, v)
\end{aligned}$$

• Pseudo-code for query algorithm $dist_k(u, v)$:

$$\operatorname{dist}_{k}(u, v)$$

$$1 \quad w \leftarrow u, i \leftarrow 0$$

$$2 \quad \text{while } w \notin B(v)$$

$$3 \quad i \leftarrow i + 1$$

$$4 \quad (u, v) \leftarrow (v, u)$$

$$5 \quad w \leftarrow p_{i}(u)$$

$$6 \quad \operatorname{return} \delta(w, u) + \delta(w, v)$$

$$p_{4}(u) \bullet \qquad \qquad \bullet p_{3}(v)$$

$$p_{2}(u) \bullet \qquad \qquad \bullet p_{1}(v)$$

$$u = p_0(u) \bullet$$

$$\operatorname{dist}_{k}(u, v)$$

$$1 \quad w \leftarrow u, i \leftarrow 0$$

$$2 \quad \text{while } w \notin B(v)$$

$$3 \quad i \leftarrow i + 1$$

$$4 \quad (u, v) \leftarrow (v, u)$$

$$5 \quad w \leftarrow p_{i}(u)$$

$$6 \quad \text{return } \delta(w, u) + \delta(w, v)$$

$$p_{4}(u) \bullet \qquad \qquad \bullet p_{3}(v)$$

$$p_{2}(u) \bullet \qquad \qquad \bullet p_{1}(v)$$

$$u = p_0(u) \circ w$$

$$\operatorname{dist}_{k}(u, v)$$

$$1 \quad w \leftarrow u, i \leftarrow 0$$

$$2 \quad \text{while } w \notin B(v)$$

$$3 \quad i \leftarrow i + 1$$

$$4 \quad (u, v) \leftarrow (v, u)$$

$$5 \quad w \leftarrow p_{i}(u)$$

$$6 \quad \text{return } \delta(w, u) + \delta(w, v)$$

$$p_{4}(u) \bullet \qquad \qquad \bullet p_{3}(v)$$

$$p_{2}(u) \bullet \qquad \qquad w \circ p_{1}(v)$$

$$u = p_0(u) \circ$$

$$\operatorname{dist}_{k}(u, v)$$

$$1 \quad w \leftarrow u, i \leftarrow 0$$

$$2 \quad \text{while } w \notin B(v)$$

$$3 \quad i \leftarrow i + 1$$

$$4 \quad (u, v) \leftarrow (v, u)$$

$$5 \quad w \leftarrow p_{i}(u)$$

$$6 \quad \operatorname{return} \delta(w, u) + \delta(w, v)$$

$$p_{4}(u) \bullet$$

$$p_{3}(v)$$

$$p_{2}(u) \circ w$$

$$\circ p_{1}(v)$$

$$u = p_0(u) \circ$$

$$\operatorname{dist}_{k}(u, v)$$

$$1 \quad w \leftarrow u, i \leftarrow 0$$

$$2 \quad \text{while } w \notin B(v)$$

$$3 \quad i \leftarrow i + 1$$

$$4 \quad (u, v) \leftarrow (v, u)$$

$$5 \quad w \leftarrow p_{i}(u)$$

$$6 \quad \operatorname{return} \delta(w, u) + \delta(w, v)$$

$$p_{4}(u) \bullet \qquad \qquad w \circ p_{3}(v)$$

$$p_{2}(u) \circ \qquad \circ p_{1}(v)$$

$$u = p_{0}(u) \circ$$

• Pseudo-code for query algorithm $dist_k(u, v)$:

 $u = p_0(u) \circ$

$$\operatorname{dist}_{k}(u, v)$$

$$1 \quad w \leftarrow u, i \leftarrow 0$$

$$2 \quad \text{while } w \notin B(v)$$

$$3 \quad i \leftarrow i + 1$$

$$4 \quad (u, v) \leftarrow (v, u)$$

$$5 \quad w \leftarrow p_{i}(u)$$

$$6 \quad \operatorname{return } \delta(w, u) + \delta(w, v)$$

$$p_{4}(u) \circ w$$

$$\circ p_{3}(v)$$

$$p_{2}(u) \circ \circ p_{1}(v)$$

• Pseudo-code for query algorithm $dist_k(u, v)$:

$$\begin{aligned}
\operatorname{dist}_{k}(u, v) \\
1 & w \leftarrow u, i \leftarrow 0 \\
2 & \operatorname{while} w \notin B(v) \\
3 & i \leftarrow i + 1 \\
4 & (u, v) \leftarrow (v, u) \\
5 & w \leftarrow p_{i}(u) \\
6 & \operatorname{return} \delta(w, u) + \delta(w, v)
\end{aligned}$$

Exercises:

- \circ Show that the query algorithm must terminate no later than at index i=k-1
- \circ Show that in Line 6, both distances $\delta(w,u)$ and $\delta(w,v)$ are stored by the data structure

Bounding the increase in stretch per iteration

We will show $\delta(v, p_{i+1}(v)) \leq \delta(u, p_i(u)) + \delta(u, v)$ for each even ithat satisfies the condition $w \notin B(v)$ in the while loop

Distance

$$\delta(u, p_4(u)) \bullet$$

$$\bullet \ \delta(v, p_3(v))$$

$$\delta(u,p_2(u))$$
 o

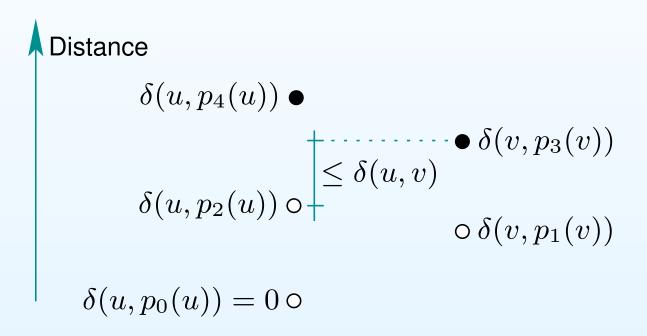
$$\circ \delta(v, p_1(v))$$

$$\delta(u, p_2(u)) \circ$$

$$\delta(u, p_0(u)) = 0 \circ$$

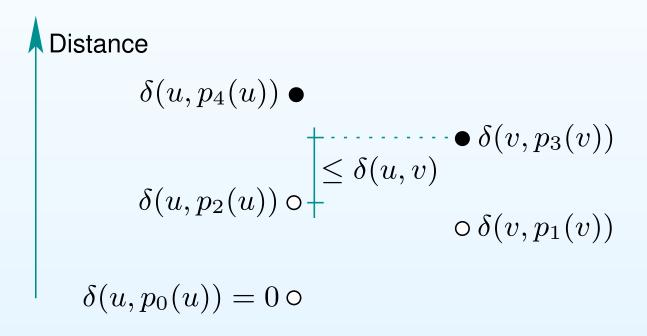
Bounding the increase in stretch per iteration

• We will show $\delta(v, p_{i+1}(v)) \leq \delta(u, p_i(u)) + \delta(u, v)$ for each even i that satisfies the condition $w \notin B(v)$ in the while loop



Bounding the increase in stretch per iteration

• We will show $\delta(v, p_{i+1}(v)) \leq \delta(u, p_i(u)) + \delta(u, v)$ for each even i that satisfies the condition $w \notin B(v)$ in the while loop



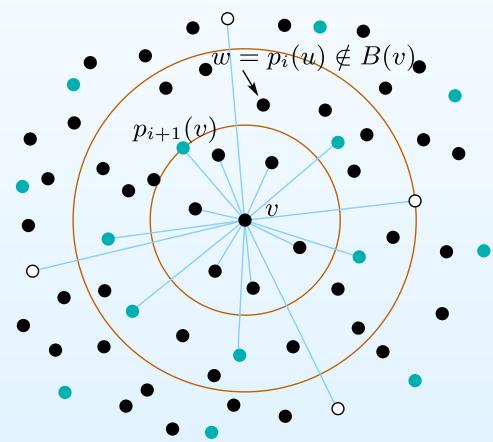
- By a symmetric argument, $\delta(u, p_{i+1}(u)) \leq \delta(v, p_i(v)) + \delta(u, v)$ for each odd i satisfying the condition in the while loop
- Every gap in the figure satisfying the condition is thus $\leq \delta(u,v)$

Showing $\delta(v, p_{i+1}(v)) \leq \delta(u, p_i(u)) + \delta(u, v)$

- While loop condition: $w = p_i(u) \notin B(v)$
- Since B(v) contains all vertices of A_i closer to v than $p_{i+1}(v)$,

$$\delta(v, p_{i+1}(v)) \le \delta(v, p_i(u))$$

 $\bullet \in A_0$ $\bullet \in A_1$ $\circ \in A_2 = A_{k-1}$



Showing $\delta(v, p_{i+1}(v)) \leq \delta(u, p_i(u)) + \delta(u, v)$

- While loop condition: $w = p_i(u) \notin B(v)$
- Since B(v) contains all vertices of A_i closer to v than $p_{i+1}(v)$,

$$\delta(v, p_{i+1}(v)) \le \delta(v, p_i(u))$$

By the triangle inequality,

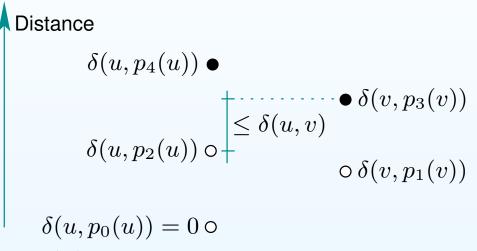
$$\delta(v, p_i(u)) \le \delta(v, u) + \delta(u, p_i(u))$$

Combining these inequalities gives the desired:

$$\delta(v, p_{i+1}(v)) \le \delta(u, p_i(u)) + \delta(u, v)$$

Showing the (2k-1)-stretch bound

 We have shown the following for all gaps satisfying the while-loop condition:



• If, e.g., $w = p_i(u)$ at termination, we have $i \le k-1$ and thus:

return value

$$\delta(w,u) + \delta(w,v) \leq \delta(w,u) + \delta(w,u) + \delta(u,v) \qquad \text{(triangle ineq.)}$$

$$= 2\delta(w,u) + \delta(u,v)$$

$$\leq 2i\delta(u,v) + \delta(u,v) \qquad \text{(gap bounds above)}$$

$$\leq 2(k-1)\delta(u,v) + \delta(u,v) \qquad \text{($i \leq k-1$)}$$

$$= (2k-1)\delta(u,v)$$

Summary and Conclusion

- We have shown that the approximate distance oracle of Thorup and Zwick has
 - \circ 2k-1 stretch
 - \circ O(k) query time
 - $\circ O(kn^{1+1/k})$ space
- The space bound is measured in words, not in bits
- For stretch 2k-1, there is a conjectured lower bound of $\Omega(n^{1+1/k})$ bits (girth conjecture)
- In practice:
 - there are much better data structures for road networks
 - Distances returned are exact (stretch 1)
 - These data structure leverage special properties of road networks that do not generalize to arbitrary graphs