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Overview for today

Shortest paths and distance oracles

Approximate distance oracles

A special case of the Thorup-Zwick approximate distance oracle
The general Thorup-Zwick oracle:

o Bounding space
o Bounding stretch
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The shortest path problem

e The shortest path problem:
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Our problem

e For an edge-weighted graph G = (V, E)), let §(s, t) be the shortest
path distance in G froms € Vot € V

e We want a data structure for GG that can answer queries of the form
“What is 0(s,t)?” forany s,t € V
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Approximate distances

o Letn = |V|

e It can be shown that in the worst case, ©(n?) space is the best we
can hope for if we want exact distances

e We therefore consider approximate shortest path distances
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Approximate distance oracle

e Foranyu,v €V, d(u,v)is an estimate of (u, v) of stretch t > 1 if

(u,v) < d(u,v) < t-6(u,v)

e (-approximate distance oracle:

o Answers queries with estimates of stretch ¢
o Should preferably use a small amount of space

e From now on, we consider only undirected edge-weighted graphs
since for any stretch ¢, @(nQ) space is the best we can hope for for
directed graphs
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A simple approximate distance oracle

e Sample each vertex independently with some probability p:
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A simple approximate distance oracle

e For each vertex:
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A simple approximate distance oracle

e Consider vertices closer than nearest sampled vertex:
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A simple approximate distance oracle

e Compute and store distances to these vertices:

7/23 "



A simple approximate distance oracle

e Compute and store distances to these vertices:

7/23 "



A simple approximate distance oracle

e Compute and store distances to all sampled vertices:
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A simple approximate distance oracle

e Store the nearest sampled vertex:
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A simple approximate distance oracle

e Store the nearest sampled vertex:
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A simple approximate distance oracle

e To answer a query for the distance between u and v:
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A simple approximate distance oracle

e To answer a query for the distance between u and v:
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A simple approximate distance oracle

e Simple look-up if v is closer to u than nearest sampled vertex:
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A simple approximate distance oracle

e Simple look-up if v is closer to u than nearest sampled vertex:
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A simple approximate distance oracle

e Consider the opposite case:
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A simple approximate distance oracle

e We stored the nearest sample to « and the distance between them:
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A simple approximate distance oracle

e And we stored the distance between v and this sampled vertex:
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A simple approximate distance oracle

e The oracle returns the sum of these two distances:
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A simple approximate distance oracle

e This estimate has stretch 3 (exercise)
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A simple approximate distance oracle

e This estimate has stretch 3 (exercise)
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Analyzing space of the approximate distance oracle

e Letting S be the sampled vertices, the oracle stores:

Partl: d(s,v)foralls € Sandallv € V
Partll: J(u,v) forallu € V and all v closer to u than u’s nearest
vertex in S
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Partl: 0(s,v) foralls € Sandallv € V

e Since each v € V is sampled independently with probability p,

E[|S]] = np

e Expected space for Part | is thus

E[|[V]|S]] = E[n|S|] = nE[|S]] = O(n’p)
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Part ll: §(u,v), all u € V, v closer to u than u’s nearest S-vertex

e Foru €V, consider all v € V' in non-decreasing distance to wu:
V1,V2,...,U, Where v1 = u
e Let ¢ be the smallest index such that vy € S (assume £ exists)

The number of distances stored fromuis £ — 1 < /¢

Need to calculate the expected space which is less than F [/]
Consider a coin with probability p of heads

Finding ¢ corresponds to:

o Flipping the coin for v, then for vs, etc.

o Stopping once it lands on heads; ¢ is the number of coin tosses
e / has the geometric distribution with parameter p so E[¢| = 1/p

e Expected space for Part Il: O(n - E[4]) = O(n/p)
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Total space of oracle

e We have shown that Parts | and |l of the oracle require a total

expected space of
n
0, (nQp B —)
p

9 n 5 1
n‘p=—<p=—p=
D n

Si-

e This optimal choice of p gives space O(n?/?)
e Is this space bound measured in words or bits?

11/23 "



The Thorup-Zwick Oracle

e We have seen a 3-approximate distance oracle requiring O (n3/?)
space and O(1) query time
e Thorup, Zwick, 2001: for any k € N, there is an oracle with

O(kn'+1/%) space,

O(k) query time,

stretch 2k — 1

O(kmn!/*) construction time (not covered in the course)

O O O O

e Examples:

o k= 1: O(n?) space and stretch 1 (exercise)
o k= 2:0(n%?) space and stretch 3 (previous slides)
o k= 3:0(n*3) space and stretch 5

e Trade-off between space and stretch is conjectured to be essentially
optimal
e We now present and analyze this oracle
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Sampling on multiple levels

e Define sampled subsets Ay, ..., A; of V' as follows:
o Ag=V
o Fori=1,...,k—1, A, is obtained from A;_1 by sampling each
of its vertices independently with some probability p

O Ak:@ .. o o o
e Example with £ = 3: .. .. ¢ o.
[ o ¢
® c A o * L I °® o,
QEAl P ... * ¢
O € Ay = A1 o ® o *
o () .. o O
o o
° ® o o
° °
.o ° * o o .'
° °
) L
° . .o o ©
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e Note that this matches what we did in the 3-approximate distance
oracle where k = 2
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Distance to a Set

e ForueVandi=0,...,k,define

o(u, A;) = min 6(u,v)

vEA;

where d(u, A;) = oo if A; = ()
o If A; # (), let p;(u) be a closest vertex to u in A;
e Note that d(u, p;(u)) = d(u, 4;)
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Bunches

e Bunch B(u) contains the vertices in A; that are closer to u than
5(U,Ai+1),i: O,...,k— 1
e Example with k£ = 3:




Information stored by the (2k — 1)-approximate distance oracle

e Foreach u € V, the oracle stores

o B(u) (hash table),
o pi(u)fori=1,2,...,k—1,
o d0(u,v)foreachv € B(u)
e This matches what we store for our 3-approximate distance oracle
where k = 2:

e Space for oracle is bounded by total space for all bunches
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Space used

e We will show that foreachu € V

E(|B(uw)[] = O(k/p + np"™)

e Pickingp = n~1/% then gives
E[|B(u)|) = O(k/n~ Y +n- (n=VE))
= O(kn*/* 4 nl/k)
= O(kn'/%)

e By linearity of expectation, the total expected space is

> 1B

ueV

E = > E[IB(w|] = O(kn'*1/¥)

ueV
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Showing E[|B(u)|] = O(k/p + np*~!)

e Recall: p is the probability that a vertex in A; is sampled and included
inAiH,i:O,...,k—Q
e Analysis for 3-approximate oracle: the expected number of vertices in

Ay closer to u than d(u, A1) is O(1/p)
e Generalizingto? =0, ...,k — 2, the expected number of vertices in

Aj; closer to u than d(u, p;+1(u)) is O(1/p)

e c A




Showing E[|B(u)|] = O(k/p + np*~!)

e Recall: pis the probability that a vertex in A; is sampled and included
inAiH,z’:O,...,k—Q

e Analysis for 3-approximate oracle: the expected number of vertices in
Ay closer to u than d(u, A1) is O(1/p)

e Generalizingto? =0, ...,k — 2, the expected number of vertices in
Aj; closer to u than d(u, p;+1(u)) is O(1/p)

e Thisisatotalof (k — 1)O(1/p) = O(k/p)

e Bunch B(u) also contains Ax_1 whose expected size is

E|Ag-1]] = np"~*

since a vertex of V isin A;_1 if and only if it is sampled
independently £ — 1 times in a row with probability p
o Thus, E[|B(u)]] = O(k/p + np"~1) as desired
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Answering queries

e Pseudo-code for query algorithm disty (u, v):

disty (u, v)

Il wu,1+0

2 while w ¢ B(v)
3 1< 1+1

4 (u,v) + (v,u)
5 w< pi(u)

6 return 6(w,u) + d(w,v)
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Answering queries

e Pseudo-code for query algorithm disty (u, v):
disty (u, v)
Il wu,1+0
2 while w ¢ B(v)
3 1+ 1+1
4 (u,v) < (v,u)
5  w < pi(u)
6 return 6(w,u) + d(w,v)

p2(u) O

u = po(u)O

19/23 '



Answering queries

e Pseudo-code for query algorithm disty (u, v):
disty (u, v)
Il wu,1+0
2 while w ¢ B(v)
3 1< 1+1
4 (u,v) + (v,u)
5 w< pi(u)
6 return 6(w,u) + d(w,v)

e Exercises:

o Show that the query algorithm must terminate no later than at
index: =k — 1

o Show that in Line 6, both distances d(w, u) and d(w, v) are
stored by the data structure
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Bounding the increase in stretch per iteration

e We will show 6 (v, pir1(v)) < d(u, pi(u)) + d(u, v) for each even i
that satisfies the condition w ¢ B(v) in the while loop

A Distance
0(u,pa(u)) ®
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Bounding the increase in stretch per iteration

e We will show 6 (v, pir1(v)) < d(u, pi(u)) + d(u, v) for each even i
that satisfies the condition w ¢ B(v) in the while loop

A Distance

o(u,po(u)) =00

e By a symmetric argument, d(u, p;+1(u)) < (v, p;(v)) 4+ d(u, v) for
each odd ¢ satisfying the condition in the while loop

e Every gap in the figure satisfying the condition is thus < §(u, v)
]
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Showing (v, p;+1(v)) < 6(u, p;(u)) + d(u,v)

e While loop condition: w = p;(u) ¢ B(v)
e Since B(v) contains all vertices of A; closer to v than p; 1 (v),

e c A
e c A




Showing 6 (v, p;+1(v)) < 6(u, p;(u)) + d(u,v)

e While loop condition: w = p;(u) ¢ B(v)
e Since B(v) contains all vertices of A; closer to v than p; 1 (v),

0(v, pix1(v)) < (v, pi(u))

e By the triangle inequality,

0(v, pi(u)) < 0(v,u) +0(u, pi(u))

e Combining these inequalities gives the desired:

5(Uapi—|—1(v)) < 5(u7pl(u)) + 5(”? U)
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Showing the (2k — 1)-stretch bound

e We have shown the following for all gaps satisfying the while-loop

condition:
Distance

5(“’7 P4 (U’)> ®

5(u7p0(u)) =00
e If,e.g., w = p;(u) at termination, we have ¢ < k — 1 and thus:

return value
S(w, u) + d(w, v) < d(w,u) + 6(w,u) + 6(u,v) (triangle ineq.)
= 20(w,u) + 6(u,v)
(

< 2i0(u,v) + 6(u,v) (gap bounds above)
< 2(k —1)6(u,v) + 6(u,v) (6 <k—1)
= (2k — 1)d(u,v)
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Summary and Conclusion

e We have shown that the approximate distance oracle of Thorup and
Zwick has

o 2k — 1 stretch
o O(k) query time
o O(kn'TVk) space

e The space bound is measured in words, not in bits

e For stretch 2k — 1, there is a conjectured lower bound of Q(n'+1/)
bits (girth conjecture)

e In practice:

o there are much better data structures for road networks

o Distances returned are exact (stretch 1)

o These data structure leverage special properties of road networks
that do not generalize to arbitrary graphs
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