
1 / 23

Distance Oracles

Christian Wulff-Nilsen

Algorithmic Techniques for Modern Data Models

DTU

September 12, 2025

Overview for today

2 / 23

• Shortest paths and distance oracles

• Approximate distance oracles

• A special case of the Thorup-Zwick approximate distance oracle

• The general Thorup-Zwick oracle:

◦ Bounding space

◦ Bounding stretch

The shortest path problem

3 / 23

• The shortest path problem:

Our problem

4 / 23

• For an edge-weighted graph G = (V,E), let δ(s, t) be the shortest

path distance in G from s ∈ V to t ∈ V
• We want a data structure for G that can answer queries of the form

“What is δ(s, t)?” for any s, t ∈ V

Approximate distances

5 / 23

• Let n = |V |
• It can be shown that in the worst case, Θ(n2) space is the best we

can hope for if we want exact distances

• We therefore consider approximate shortest path distances

Approximate distance oracle

6 / 23

• For any u, v ∈ V , δ̃(u, v) is an estimate of δ(u, v) of stretch t ≥ 1 if

δ(u, v) ≤ δ̃(u, v) ≤ t · δ(u, v)

• t-approximate distance oracle:

◦ Answers queries with estimates of stretch t
◦ Should preferably use a small amount of space

• From now on, we consider only undirected edge-weighted graphs

since for any stretch t, Θ(n2) space is the best we can hope for for

directed graphs

A simple approximate distance oracle

7 / 23

• Sample each vertex independently with some probability p:

A simple approximate distance oracle

7 / 23

• Sample each vertex independently with some probability p:

A simple approximate distance oracle

7 / 23

• For each vertex:

A simple approximate distance oracle

7 / 23

• For each vertex:

A simple approximate distance oracle

7 / 23

• Consider vertices closer than nearest sampled vertex:

A simple approximate distance oracle

7 / 23

• Consider vertices closer than nearest sampled vertex:

A simple approximate distance oracle

7 / 23

• Compute and store distances to these vertices:

A simple approximate distance oracle

7 / 23

• Compute and store distances to these vertices:

A simple approximate distance oracle

7 / 23

• Compute and store distances to all sampled vertices:

A simple approximate distance oracle

7 / 23

• Compute and store distances to all sampled vertices:

A simple approximate distance oracle

7 / 23

• Store the nearest sampled vertex:

A simple approximate distance oracle

7 / 23

• Store the nearest sampled vertex:

A simple approximate distance oracle

7 / 23

• To answer a query for the distance between u and v:

A simple approximate distance oracle

7 / 23

• To answer a query for the distance between u and v:

v

u

A simple approximate distance oracle

7 / 23

• Simple look-up if v is closer to u than nearest sampled vertex:

u

v

A simple approximate distance oracle

7 / 23

• Simple look-up if v is closer to u than nearest sampled vertex:

A simple approximate distance oracle

7 / 23

• Consider the opposite case:

u

v

A simple approximate distance oracle

7 / 23

• We stored the nearest sample to u and the distance between them:

u

v

A simple approximate distance oracle

7 / 23

• And we stored the distance between v and this sampled vertex:

u

v

A simple approximate distance oracle

7 / 23

• The oracle returns the sum of these two distances:

u

v

A simple approximate distance oracle

7 / 23

• This estimate has stretch 3 (exercise)

u

v

A simple approximate distance oracle

7 / 23

• This estimate has stretch 3 (exercise)

u

v

δ(u, v)

Analyzing space of the approximate distance oracle

8 / 23

• Letting S be the sampled vertices, the oracle stores:

Part I: δ(s, v) for all s ∈ S and all v ∈ V
Part II: δ(u, v) for all u ∈ V and all v closer to u than u’s nearest

vertex in S

Part I: δ(s, v) for all s ∈ S and all v ∈ V

9 / 23

• Since each v ∈ V is sampled independently with probability p,

E[|S|] = np

• Expected space for Part I is thus

E[|V ||S|] = E[n|S|] = nE[|S|] = O(n2p)

Part II: δ(u, v), all u ∈ V , v closer to u than u’s nearest S-vertex

10 / 23

• For u ∈ V , consider all v ∈ V in non-decreasing distance to u:

v1, v2, . . . , vn where v1 = u
• Let ℓ be the smallest index such that vℓ ∈ S (assume ℓ exists)

v2

v6 = vℓ

v7

v8

v9

v3

v4

v5

u = v1

• The number of distances stored from u is ℓ− 1 < ℓ
• Need to calculate the expected space which is less than E[ℓ]
• Consider a coin with probability p of heads

• Finding ℓ corresponds to:

◦ Flipping the coin for v1, then for v2, etc.

◦ Stopping once it lands on heads; ℓ is the number of coin tosses

• ℓ has the geometric distribution with parameter p so E[ℓ] = 1/p
• Expected space for Part II: O(n · E[ℓ]) = O(n/p)

Total space of oracle

11 / 23

• We have shown that Parts I and II of the oracle require a total

expected space of

O

(

n2p+
n

p

)

n2p =
n

p
⇔ p2 =

1

n
⇔ p =

1√
n

• This optimal choice of p gives space O(n3/2)
• Is this space bound measured in words or bits?

The Thorup-Zwick Oracle

12 / 23

• We have seen a 3-approximate distance oracle requiring O(n3/2)
space and O(1) query time

• Thorup, Zwick, 2001: for any k ∈ N, there is an oracle with

◦ O(kn1+1/k) space,

◦ O(k) query time,

◦ stretch 2k − 1
◦ O(kmn1/k) construction time (not covered in the course)

• Examples:

◦ k = 1: O(n2) space and stretch 1 (exercise)

◦ k = 2: O(n3/2) space and stretch 3 (previous slides)

◦ k = 3: O(n4/3) space and stretch 5

• Trade-off between space and stretch is conjectured to be essentially

optimal

• We now present and analyze this oracle

Sampling on multiple levels

13 / 23

• Define sampled subsets A0, . . . , Ak of V as follows:

◦ A0 = V
◦ For i = 1, . . . , k− 1, Ai is obtained from Ai−1 by sampling each

of its vertices independently with some probability p
◦ Ak = ∅

• Example with k = 3:

∈ A0

∈ A1

∈ A2 = Ak−1

Sampling on multiple levels

13 / 23

• Define sampled subsets A0, . . . , Ak of V as follows:

◦ A0 = V
◦ For i = 1, . . . , k− 1, Ai is obtained from Ai−1 by sampling each

of its vertices independently with some probability p
◦ Ak = ∅

• Example with k = 3:

∈ A0

∈ A1

∈ A2 = Ak−1

Sampling on multiple levels

13 / 23

• Define sampled subsets A0, . . . , Ak of V as follows:

◦ A0 = V
◦ For i = 1, . . . , k− 1, Ai is obtained from Ai−1 by sampling each

of its vertices independently with some probability p
◦ Ak = ∅

• Example with k = 3:

∈ A0

∈ A1

∈ A2 = Ak−1

Sampling on multiple levels

13 / 23

• Define sampled subsets A0, . . . , Ak of V as follows:

◦ A0 = V
◦ For i = 1, . . . , k− 1, Ai is obtained from Ai−1 by sampling each

of its vertices independently with some probability p
◦ Ak = ∅

• Example with k = 3:

∈ A0

∈ A1

∈ A2 = Ak−1

• Note that this matches what we did in the 3-approximate distance

oracle where k = 2

Distance to a Set

14 / 23

• For u ∈ V and i = 0, . . . , k, define

δ(u,Ai) = min
v∈Ai

δ(u, v)

where δ(u,Ai) =∞ if Ai = ∅
• If Ai 6= ∅, let pi(u) be a closest vertex to u in Ai

• Note that δ(u, pi(u)) = δ(u,Ai)

∈ A1

u

p1(u)

δ(u,A1)

Bunches

15 / 23

• Bunch B(u) contains the vertices in Ai that are closer to u than

δ(u,Ai+1), i = 0, . . . , k − 1
• Example with k = 3:

p2(u)

p1(u)∈ A0

∈ A1

∈ A2 = Ak−1 u = p0(u)

• Observe Ak = ∅ ⇒ δ(u,Ak) =∞⇒ Ak−1 ⊆ B(u)

Information stored by the (2k − 1)-approximate distance oracle

16 / 23

• For each u ∈ V , the oracle stores

◦ B(u) (hash table),

◦ pi(u) for i = 1, 2, . . . , k − 1,

◦ δ(u, v) for each v ∈ B(u)

• This matches what we store for our 3-approximate distance oracle

where k = 2:

• Space for oracle is bounded by total space for all bunches

Space used

17 / 23

• We will show that for each u ∈ V

E[|B(u)|] = O(k/p+ npk−1)

• Picking p = n−1/k then gives

E[|B(u)|] = O(k/n−1/k + n · (n−1/k)k−1)

= O(kn1/k + n1/k)

= O(kn1/k)

• By linearity of expectation, the total expected space is

E

[
∑

u∈V

|B(u)|
]

=
∑

u∈V

E[|B(u)|] = O(kn1+1/k)

Showing E[|B(u)|] = O(k/p+ npk−1)

18 / 23

• Recall: p is the probability that a vertex in Ai is sampled and included

in Ai+1, i = 0, . . . , k − 2
• Analysis for 3-approximate oracle: the expected number of vertices in

A0 closer to u than δ(u,A1) is O(1/p)
• Generalizing to i = 0, . . . , k − 2, the expected number of vertices in

Ai closer to u than δ(u, pi+1(u)) is O(1/p)

p2(u)

p1(u)∈ A0

∈ A1

∈ A2 = Ak−1 u = p0(u)

Showing E[|B(u)|] = O(k/p+ npk−1)

18 / 23

• Recall: p is the probability that a vertex in Ai is sampled and included

in Ai+1, i = 0, . . . , k − 2
• Analysis for 3-approximate oracle: the expected number of vertices in

A0 closer to u than δ(u,A1) is O(1/p)
• Generalizing to i = 0, . . . , k − 2, the expected number of vertices in

Ai closer to u than δ(u, pi+1(u)) is O(1/p)
• This is a total of (k − 1)O(1/p) = O(k/p)
• Bunch B(u) also contains Ak−1 whose expected size is

E[|Ak−1|] = npk−1

since a vertex of V is in Ak−1 if and only if it is sampled

independently k − 1 times in a row with probability p
• Thus, E[|B(u)|] = O(k/p+ npk−1) as desired

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

p3(v)

p1(v)

u = p0(u)

p4(u)

p2(u)

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

p3(v)

p1(v)

u = p0(u)

p4(u)

p2(u)

w

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

p3(v)

p1(v)

u = p0(u)

p4(u)

p2(u)
w

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

p3(v)

p1(v)

u = p0(u)

p4(u)

p2(u) w

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

p3(v)

p1(v)

u = p0(u)

p4(u)

p2(u)

w

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

p3(v)

p1(v)

u = p0(u)

p4(u)

p2(u)

w

Answering queries

19 / 23

• Pseudo-code for query algorithm distk(u, v):

distk(u, v)
1 w ← u, i← 0
2 while w /∈ B(v)
3 i← i+ 1
4 (u, v)← (v, u)
5 w ← pi(u)
6 return δ(w, u) + δ(w, v)

• Exercises:

◦ Show that the query algorithm must terminate no later than at

index i = k − 1
◦ Show that in Line 6, both distances δ(w, u) and δ(w, v) are

stored by the data structure

Bounding the increase in stretch per iteration

20 / 23

• We will show δ(v, pi+1(v)) ≤ δ(u, pi(u)) + δ(u, v) for each even i
that satisfies the condition w /∈ B(v) in the while loop

δ(v, p3(v))

δ(v, p1(v))

Distance

δ(u, p0(u)) = 0

δ(u, p2(u))

δ(u, p4(u))

Bounding the increase in stretch per iteration

20 / 23

• We will show δ(v, pi+1(v)) ≤ δ(u, pi(u)) + δ(u, v) for each even i
that satisfies the condition w /∈ B(v) in the while loop

δ(v, p3(v))

δ(v, p1(v))

Distance

δ(u, p0(u)) = 0

δ(u, p2(u))

δ(u, p4(u))

≤ δ(u, v)

Bounding the increase in stretch per iteration

20 / 23

• We will show δ(v, pi+1(v)) ≤ δ(u, pi(u)) + δ(u, v) for each even i
that satisfies the condition w /∈ B(v) in the while loop

δ(v, p3(v))

δ(v, p1(v))

Distance

δ(u, p0(u)) = 0

δ(u, p2(u))

δ(u, p4(u))

≤ δ(u, v)

• By a symmetric argument, δ(u, pi+1(u)) ≤ δ(v, pi(v)) + δ(u, v) for

each odd i satisfying the condition in the while loop

• Every gap in the figure satisfying the condition is thus ≤ δ(u, v)

Showing δ(v, pi+1(v)) ≤ δ(u, pi(u)) + δ(u, v)

21 / 23

• While loop condition: w = pi(u) /∈ B(v)
• Since B(v) contains all vertices of Ai closer to v than pi+1(v),

δ(v, pi+1(v)) ≤ δ(v, pi(u))

pi+1(v)∈ A0

∈ A1

∈ A2 = Ak−1

w = pi(u) /∈ B(v)

v

Showing δ(v, pi+1(v)) ≤ δ(u, pi(u)) + δ(u, v)

21 / 23

• While loop condition: w = pi(u) /∈ B(v)
• Since B(v) contains all vertices of Ai closer to v than pi+1(v),

δ(v, pi+1(v)) ≤ δ(v, pi(u))

• By the triangle inequality,

δ(v, pi(u)) ≤ δ(v, u) + δ(u, pi(u))

• Combining these inequalities gives the desired:

δ(v, pi+1(v)) ≤ δ(u, pi(u)) + δ(u, v)

Showing the (2k − 1)-stretch bound

22 / 23

• We have shown the following for all gaps satisfying the while-loop

condition:

δ(v, p3(v))

δ(v, p1(v))

Distance

δ(u, p0(u)) = 0

δ(u, p2(u))

δ(u, p4(u))

≤ δ(u, v)

• If, e.g., w = pi(u) at termination, we have i ≤ k − 1 and thus:

return value
︷ ︸︸ ︷

δ(w, u) + δ(w, v) ≤ δ(w, u) + δ(w, u) + δ(u, v) (triangle ineq.)

= 2δ(w, u) + δ(u, v)

≤ 2iδ(u, v) + δ(u, v) (gap bounds above)

≤ 2(k − 1)δ(u, v) + δ(u, v) (i ≤ k − 1)

= (2k − 1)δ(u, v)

Summary and Conclusion

23 / 23

• We have shown that the approximate distance oracle of Thorup and

Zwick has

◦ 2k − 1 stretch

◦ O(k) query time

◦ O(kn1+1/k) space

• The space bound is measured in words, not in bits

• For stretch 2k − 1, there is a conjectured lower bound of Ω(n1+1/k)
bits (girth conjecture)

• In practice:

◦ there are much better data structures for road networks

◦ Distances returned are exact (stretch 1)

◦ These data structure leverage special properties of road networks

that do not generalize to arbitrary graphs

	Overview for today
	The shortest path problem
	Our problem
	Approximate distances
	Approximate distance oracle
	A simple approximate distance oracle
	Analyzing space of the approximate distance oracle
	Part I: (s,v) for all sS and all vV
	Part II: (u,v), all uV, v closer to u than u's nearest S-vertex
	Total space of oracle
	The Thorup-Zwick Oracle
	Sampling on multiple levels
	Distance to a Set
	Bunches
	Information stored by the (2k-1)-approximate distance oracle
	Space used
	Showing E[|B(u)|] = O(k/p + npk-1)
	Answering queries
	Bounding the increase in stretch per iteration
	Showing (v,pi+1(v))(u,pi(u)) + (u,v)
	Showing the (2k-1)-stretch bound
	Summary and Conclusion

