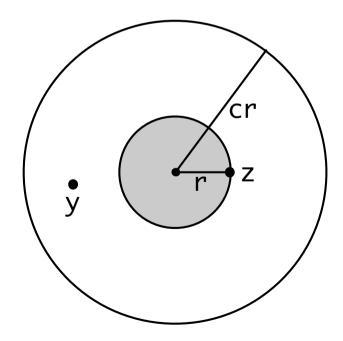

# Approximate Near Neighbor Search: Locality Sensitive Hashing

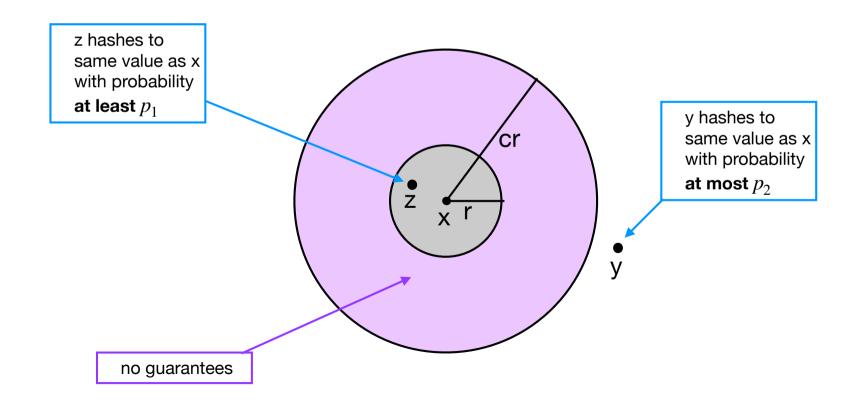
Inge Li Gørtz


# Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure
  which given a query point x returns the point in P closest to x.
- Metric. Distance function d is a metric:
  - 1.  $d(x,y) \ge 0$
  - 2. d(x,y) = 0 if and only if x = y
  - 3. d(x,y) = d(y,x)
  - 4.  $d(x,y) \le d(x,z) + d(z,y)$
- Warmup. 1D: Real line



# Approximate Near Neighbors


- ApproximateNearNeighbor(x): Return a point y such that  $d(x, y) \le c \cdot \min_{z \in P} d(x, z)$
- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P such that  $d(x,z) \le r$  then return a point y such that  $d(x,y) \le c \cdot r$ . If no such point z exists return Fail.
- Randomised version: Return such an y with probability  $\delta$ .



#### Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is  $(r, cr, p_1, p_2)$ -sensitive with  $p_1 > p_2$  and c > 1 if:
  - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$  (close points)
  - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$  (distant points)

for h chosen randomly from H.

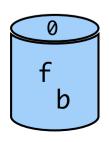


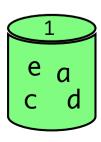
# Hamming Distance

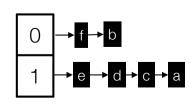
- P set of n bit strings each of length d.
- Hamming distance. the number of bits where x and y differ:

$$d(x, y) = |\{i : x_i \neq y_i\}|$$

• Example.


- Hash function. Chose  $i \in \{1,...,d\}$  uniformly at random and set  $h(x) = x_i$ .
- What is the probability that h(x) = h(y)?


• 
$$d(x, y) \le r \Rightarrow P[h(x) = h(y)] \ge 1 - r/d$$


• 
$$d(x, y) \ge cr \Rightarrow P[h(x) = h(y)] \le 1 - cr/d$$

- Pick random index i uniformly at random. Let  $h(x) = x_i$ .
- Bucket: Strings with same hash value h(x).
- Insert(x): Insert x in the list A[h(x)]
- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in A[h(x)] until find one that is at most cr away. If no such string found return FAIL.

$$h(x) = x_3$$
 $a = 0011101$   $h(a) = 1$   $d = 0110011$   $h(d) = 1$ 
 $b = 0101001$   $h(b) = 0$   $e = 1011101$   $h(e) = 1$ 
 $c = 0010010$   $h(c) = 1$   $f = 1101101$   $h(f) = 0$ 







Pick k random indexes uniformly and independently at random with replacement:

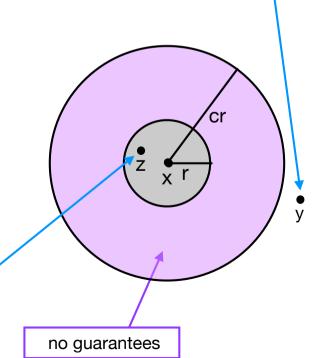
$$\bullet \ g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$

• Example. k = 3.  $g(x) = x_2x_3x_6$ 

$$x = 1 0 1 0 0 1 0 0$$
  
 $y = 0 1 1 0 0 1 0$ 

$$g(x) = 011$$

$$g(y) = 111$$


y hashes to same value as x with probability at most  $p_2^k$ 

• Probability that g(x) = g(y)?

• 
$$d(x, y) \le r \Rightarrow P[g(x) = g(y)] \ge (1 - r/d)^k$$

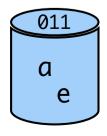
• 
$$d(x, y) \ge cr \Rightarrow P[g(x) = g(y)] \le (1 - cr/d)^k$$

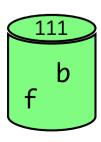
z hashes to same value as x with probability at least  $p_1^k$ 

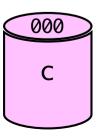


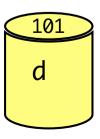
Pick k random indexes uniformly and independently at random with replacement:

• 
$$g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$


• Bucket: Strings with same hash value g(x).


```
g(x) = x_2 x_4 x_7


a = 0011101 g(a) = 011 d = 0110011 g(d) = 101

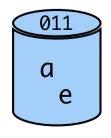

b = 0101001 g(b) = 111 e = 1011101 g(e) = 011

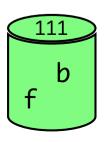
c = 0010010 g(c) = 000 f = 1101101 g(f) = 111
```

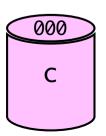


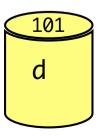


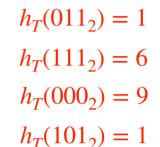


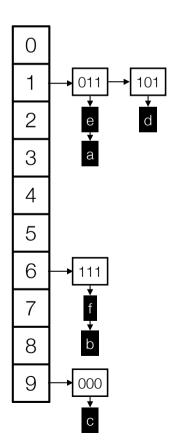




• Pick *k* random indexes uniformly and independently at random with replacement:


• 
$$g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$

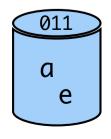

- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function  $h_T$ .

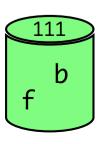

$$g(x) = x_2 x_4 x_7$$
  
 $a = 0011101$   $g(a) = 011$   $d = 0110011$   $g(d) = 101$   
 $b = 0101001$   $g(b) = 111$   $e = 1011101$   $g(e) = 011$   
 $c = 0010010$   $g(c) = 000$   $f = 1101101$   $g(f) = 111$ 

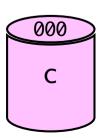


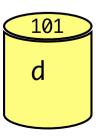




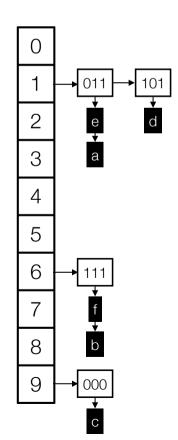


- Pick k random indexes uniformly and independently at random with replacement:
  - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function  $h_T$ .
- Insert(x): Insert x in the list of g(x) in T.
- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in g(x) until find one that is at most cr away. If no such string found return FAIL.

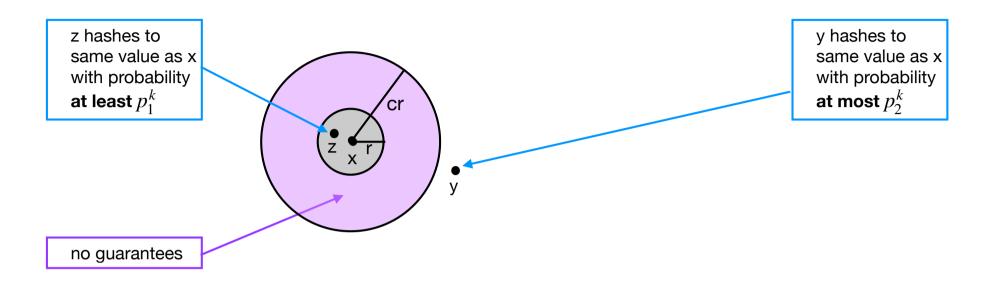
$$g(x) = x_2 x_4 x_7$$
  
 $a = 0011101$   $g(a) = 011$   $d = 0110011$   $g(d) = 101$   
 $b = 0101001$   $g(b) = 111$   $e = 1011101$   $g(e) = 011$   
 $c = 0010010$   $g(c) = 000$   $f = 1101101$   $g(f) = 111$ 



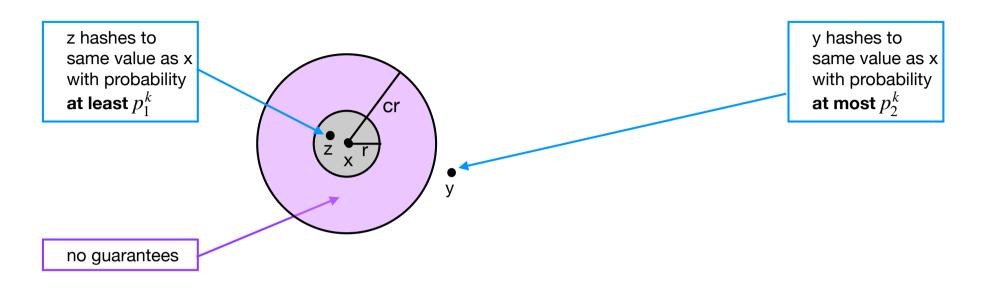




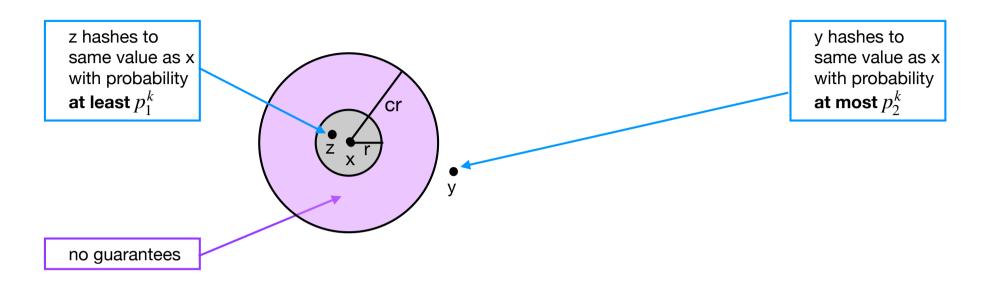


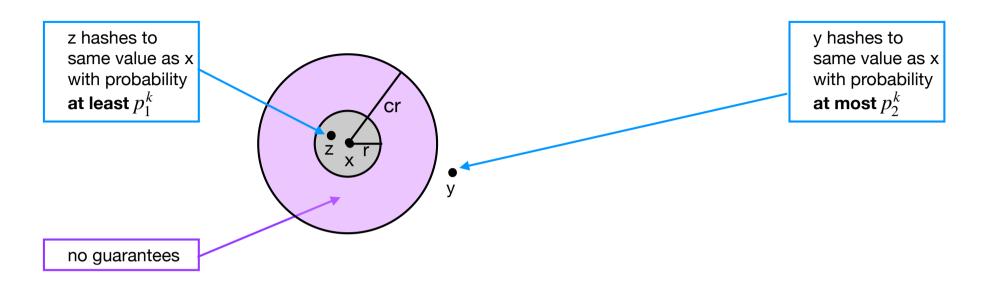

$$h_T(111_2) = 6$$


$$h_T(000_2) = 9$$

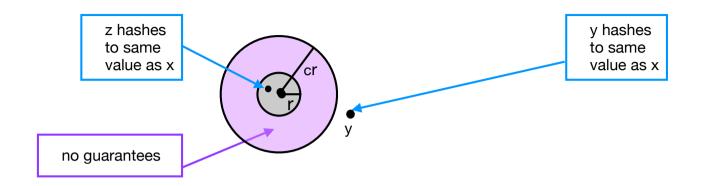
$$h_T(101_2) = 1$$



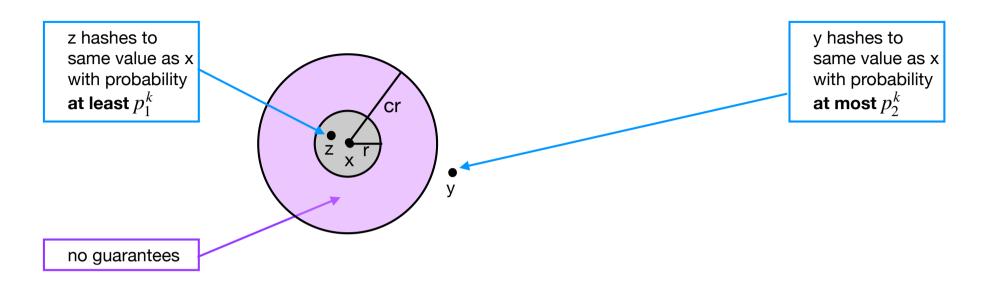




- · What happens when we increase k?
  - Far away strings:




- · What happens when we increase k?
  - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

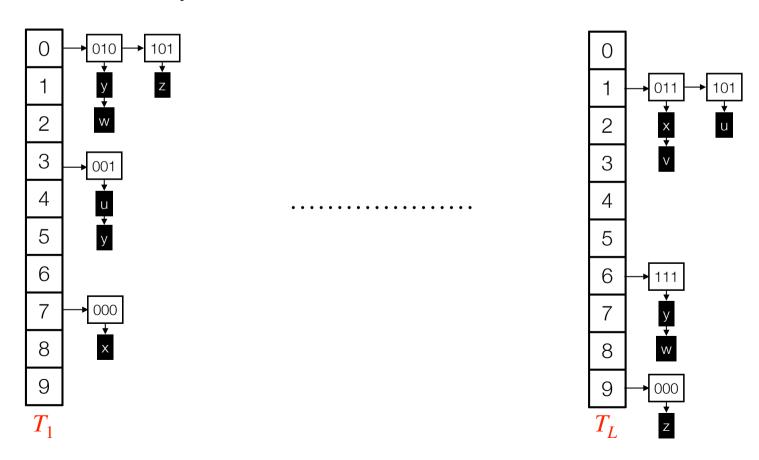



- · What happens when we increase k?
  - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
  - Close strings:



- · What happens when we increase k?
  - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
  - Close strings: Probability that a close string hashes to the same as x decrease.




- Expected number of far away strings that hashes to same bucket as x:
  - $F = \{y : d(x, y) > cr\}.$
- For  $y \in F$  we want  $P[g(y) = g(x)] \le 1/n$ :
  - Set  $k = \lg n / \lg (1/p_2)$
- $X_y = \begin{cases} 1 & y \text{ collides with } x \\ 0 & \text{otherwise} \end{cases}$
- #far away strings colliding with x:  $X = \sum_{y \in F} X_y$
- $E[X] = \sum_{y \in F} E[X_y] = \sum_{y \in F} 1/n \le 1.$
- Markov:  $P[X > 6] < E[X]/6 \le 1/6$ .



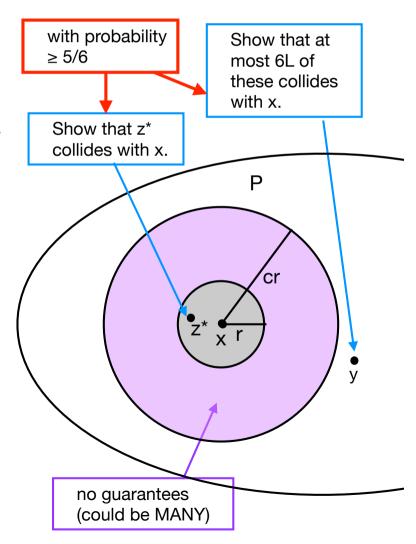
- · What happens when we increase k?
  - Probability that a far away string hashes to the same bucket as x decrease.
    - $k = \lg n / \lg (1/p_2)$   $\Rightarrow$  with probability  $\geq 5/6$  at most 6 far away strings hashes to x's bucket.
  - Probability that a close string hashes to the same as x decrease.

# LSH with Hamming Distance: Solution 3 (Amplification)

- Construct L hash tables  $T_j$ . Each table  $T_j$  has its own independently chosen hash function  $h_j$  and its own independently chosen locality sensitive hash function  $g_j$ .
- Insert(x): For all  $1 \le j \le L$  insert x in the list of  $g_j(x)$  in  $T_j$ .
- Query(x): For all  $1 \le j \le L$  check each element in bucket  $g_j(x)$  in  $T_j$ . Return the one closest to x if it is at most cr away. Otherwise return FAIL.



#### LSH with Hamming Distance


Let 
$$k = \frac{\lg n}{\lg(1/p_2)}$$
,  $\rho = \frac{\lg(1/p_1)}{\lg(1/p_2)}$ , and  $L = \lceil 2n^\rho \rceil$ , where  $p_1 = 1 - r/d$  and  $p_2 = 1 - cr/d$ .

- Claim 1. If there exists a string  $z^*$  in P with  $d(x,z^*) \le r$  then with probability at least 5/6 we will return some z in P for which  $d(x,z) \le r$ .
- Probability that z\* collides with x:
  - $P[\exists i: g_i(x) = g_i(z^*)] = 1 P[g_i(x) \neq g_i(z^*) \text{ for all } i]$   $= 1 \prod_{i=1}^{L} P[g_i(x) \neq g_i(z^*)]$   $= 1 \prod_{i=1}^{L} \left(1 P[g_i(x) = g_i(z^*)]\right)$   $\geq 1 \prod_{i=1}^{L} \left(1 p_1^k\right) = 1 \left(1 p_1^k\right)^L \geq 1 e^{-Lp_1^k}$   $\geq 1 \frac{1}{e^2} \geq 1 1/6 = 5/6$

 $z^*$  hashes to same value as x with probability at least  $p_1^k$ 

#### LSH with Hamming Distance

- Fast query time.
  - Check at most 6L + 1 strings and return FAIL if no close string found.
  - Otherwise return closest string found.
- Theorem. If there exists a string  $z^*$  in P with  $d(x, z^*) \le r$  then with probability at least 2/3 we will return some y in P for which  $d(x, y) \le cr$ .
- Proof idea.
  - Show that with probability at least 5/6 there are at most 6L far away strings that collides with x.
  - Already showed the probability that  $z^*$  is in the same bucket as x in at least one of the L hash tables is at least 5/6.

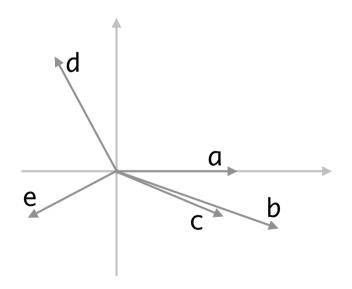


# LSH with Hamming Distance

- Insert time O(kL).
- Expected query time O(L(k+d)).
  - O(L) checks.
  - Each check takes O(k+d) time.

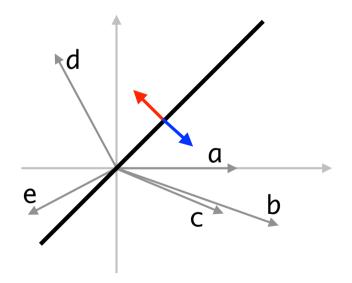
#### Locality Sensitive Hashing

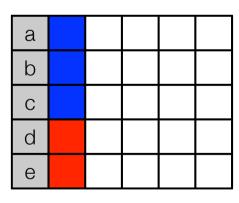
- Locality sensitive hash function. A family of hash functions  $\mathcal{H}$  is  $(r, cr, p_1, p_2)$ -sensitive with  $p_1 > p_2$  and c > 1 if:
  - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$  (close points)
  - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$  (distant points)
- Amplification.
  - Choose L hash functions  $g_j(x) = h_{1,j}(x) \cdot h_{2,j}(x) \cdots h_{k,j}(x)$ , where  $h_{i,j}$  is chosen independently and uniformly at random from  $\mathcal{H}$ .
- Locality sensitive hashing scheme.
  - Construct L hash tables  $T_i$ .
  - Insert(x): For all  $1 \le j \le L$  insert x in the list of  $g_j(x)$  in  $T_j$ .
  - Query(x): For all  $1 \le j \le L$  check each element in bucket  $g_j(x)$  in  $T_j$ . Return the one closest to x. Check at most 6L+1 elements. If no element found at distance less than  $c \cdot r$  from x return FAIL.


#### Jaccard distance and Min Hash

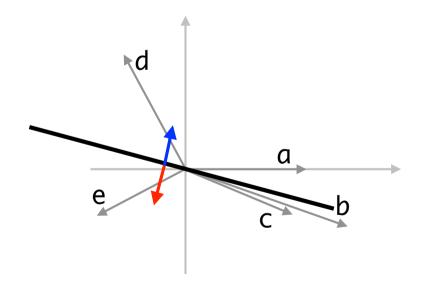
- . Jaccard distance. Jaccard similarity:  $\operatorname{Jsim}(A,B) = \frac{|A \cap B|}{|A \cup B|}$ 
  - Jaccard distance: 1- Jsim(A,B).
  - Hash function: Min Hash. (exercise)

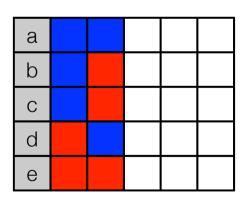
# Exercises


- Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$

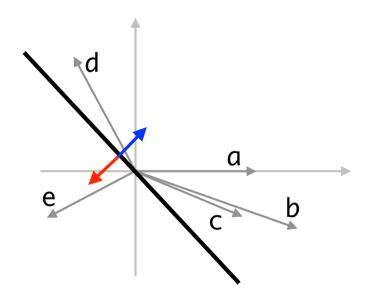

- · Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$

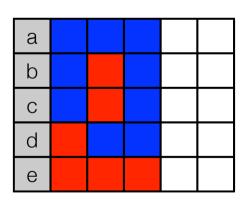



| а |  |  |  |
|---|--|--|--|
| b |  |  |  |
| С |  |  |  |
| d |  |  |  |
| е |  |  |  |

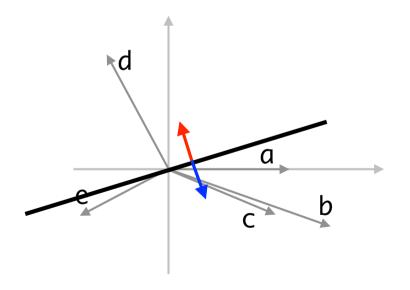

- Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$

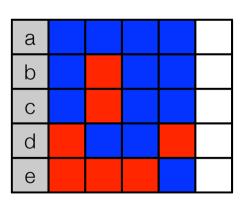




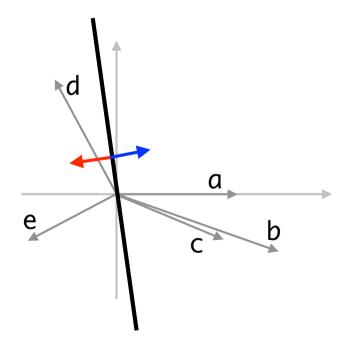


- Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$

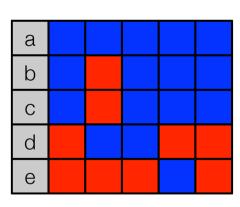




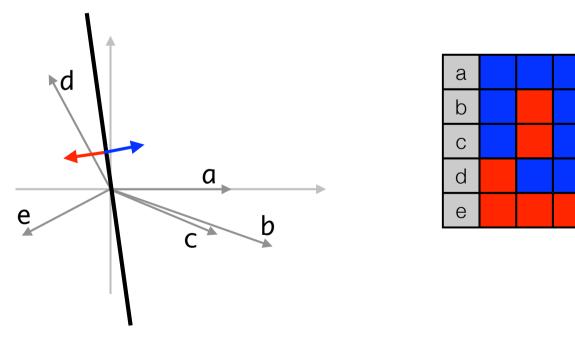


- Collection of vectors.
- Distance between two vectors is the angular distance between them  $\operatorname{dist}(u,v) = \angle(u,v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$







- Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$






- Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$





- Collection of vectors.
- Distance between two vectors is the angular distance between them  $dist(u, v) = \angle(u, v)/\pi$ .
  - Assume u and v are unit vectors. Then  $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
  - Random projection: Take a random vector r and set  $h_r(u) = \text{sign}(r \cdot u)$



• Can show that  $P[h(u) = h(v)] = 1 - \angle(u, v)/\pi$ .