Approximate Near Neighbor Search: Locality Sensitive Hashing

Inge Li Gørtz

Nearest Neighbor

- Nearest Neighbor. Given a set of points P in a metric space, build a data structure
 which given a query point x returns the point in P closest to x.
- Metric. Distance function d is a metric:
 - 1. $d(x,y) \ge 0$
 - 2. d(x,y) = 0 if and only if x = y
 - 3. d(x,y) = d(y,x)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$
- Warmup. 1D: Real line

Approximate Near Neighbors

- ApproximateNearNeighbor(x): Return a point y such that $d(x, y) \le c \cdot \min_{z \in P} d(x, z)$
- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P such that $d(x,z) \le r$ then return a point y such that $d(x,y) \le c \cdot r$. If no such point z exists return Fail.
- Randomised version: Return such an y with probability δ .

Locality Sensitive Hashing

- Locality sensitive hashing. A family of hash functions H is (r, cr, p_1, p_2) -sensitive with $p_1 > p_2$ and c > 1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)

for h chosen randomly from H.

Hamming Distance

- P set of n bit strings each of length d.
- Hamming distance. the number of bits where x and y differ:

$$d(x, y) = |\{i : x_i \neq y_i\}|$$

• Example.

- Hash function. Chose $i \in \{1,...,d\}$ uniformly at random and set $h(x) = x_i$.
- What is the probability that h(x) = h(y)?

•
$$d(x, y) \le r \Rightarrow P[h(x) = h(y)] \ge 1 - r/d$$

•
$$d(x, y) \ge cr \Rightarrow P[h(x) = h(y)] \le 1 - cr/d$$

- Pick random index i uniformly at random. Let $h(x) = x_i$.
- Bucket: Strings with same hash value h(x).
- Insert(x): Insert x in the list A[h(x)]
- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in A[h(x)] until find one that is at most cr away. If no such string found return FAIL.

$$h(x) = x_3$$
 $a = 0011101$ $h(a) = 1$ $d = 0110011$ $h(d) = 1$
 $b = 0101001$ $h(b) = 0$ $e = 1011101$ $h(e) = 1$
 $c = 0010010$ $h(c) = 1$ $f = 1101101$ $h(f) = 0$

Pick k random indexes uniformly and independently at random with replacement:

$$\bullet \ g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$

• Example. k = 3. $g(x) = x_2x_3x_6$

$$x = 1 0 1 0 0 1 0 0$$

 $y = 0 1 1 0 0 1 0$

$$g(x) = 011$$

$$g(y) = 111$$

y hashes to same value as x with probability at most p_2^k

• Probability that g(x) = g(y)?

•
$$d(x, y) \le r \Rightarrow P[g(x) = g(y)] \ge (1 - r/d)^k$$

•
$$d(x, y) \ge cr \Rightarrow P[g(x) = g(y)] \le (1 - cr/d)^k$$

z hashes to same value as x with probability at least p_1^k

Pick k random indexes uniformly and independently at random with replacement:

•
$$g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$

• Bucket: Strings with same hash value g(x).

```
g(x) = x_2 x_4 x_7

a = 0011101 g(a) = 011 d = 0110011 g(d) = 101

b = 0101001 g(b) = 111 e = 1011101 g(e) = 011

c = 0010010 g(c) = 000 f = 1101101 g(f) = 111
```


• Pick *k* random indexes uniformly and independently at random with replacement:

•
$$g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$$

- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function h_T .

$$g(x) = x_2 x_4 x_7$$

 $a = 0011101$ $g(a) = 011$ $d = 0110011$ $g(d) = 101$
 $b = 0101001$ $g(b) = 111$ $e = 1011101$ $g(e) = 011$
 $c = 0010010$ $g(c) = 000$ $f = 1101101$ $g(f) = 111$

- Pick k random indexes uniformly and independently at random with replacement:
 - $g(x) = x_{i_1} x_{i_2} \cdots x_{i_k}$
- Bucket: Strings with same hash value g(x).
- Save buckets in a hash table T with hash function h_T .
- Insert(x): Insert x in the list of g(x) in T.
- NearNeighbour(x): Compute Hamming distance from x to all bitstrings in g(x) until find one that is at most cr away. If no such string found return FAIL.

$$g(x) = x_2 x_4 x_7$$

 $a = 0011101$ $g(a) = 011$ $d = 0110011$ $g(d) = 101$
 $b = 0101001$ $g(b) = 111$ $e = 1011101$ $g(e) = 011$
 $c = 0010010$ $g(c) = 000$ $f = 1101101$ $g(f) = 111$

$$h_T(111_2) = 6$$

$$h_T(000_2) = 9$$

$$h_T(101_2) = 1$$

- · What happens when we increase k?
 - Far away strings:

- · What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

- · What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
 - Close strings:

- · What happens when we increase k?
 - Far away strings: Probability that a far away string hashes to the same bucket as x decrease.
 - Close strings: Probability that a close string hashes to the same as x decrease.

- Expected number of far away strings that hashes to same bucket as x:
 - $F = \{y : d(x, y) > cr\}.$
- For $y \in F$ we want $P[g(y) = g(x)] \le 1/n$:
 - Set $k = \lg n / \lg (1/p_2)$
- $X_y = \begin{cases} 1 & y \text{ collides with } x \\ 0 & \text{otherwise} \end{cases}$
- #far away strings colliding with x: $X = \sum_{y \in F} X_y$
- $E[X] = \sum_{y \in F} E[X_y] = \sum_{y \in F} 1/n \le 1.$
- Markov: $P[X > 6] < E[X]/6 \le 1/6$.

- · What happens when we increase k?
 - Probability that a far away string hashes to the same bucket as x decrease.
 - $k = \lg n / \lg (1/p_2)$ \Rightarrow with probability $\geq 5/6$ at most 6 far away strings hashes to x's bucket.
 - Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 3 (Amplification)

- Construct L hash tables T_j . Each table T_j has its own independently chosen hash function h_j and its own independently chosen locality sensitive hash function g_j .
- Insert(x): For all $1 \le j \le L$ insert x in the list of $g_j(x)$ in T_j .
- Query(x): For all $1 \le j \le L$ check each element in bucket $g_j(x)$ in T_j . Return the one closest to x if it is at most cr away. Otherwise return FAIL.

LSH with Hamming Distance

Let
$$k = \frac{\lg n}{\lg(1/p_2)}$$
, $\rho = \frac{\lg(1/p_1)}{\lg(1/p_2)}$, and $L = \lceil 2n^\rho \rceil$, where $p_1 = 1 - r/d$ and $p_2 = 1 - cr/d$.

- Claim 1. If there exists a string z^* in P with $d(x,z^*) \le r$ then with probability at least 5/6 we will return some z in P for which $d(x,z) \le r$.
- Probability that z* collides with x:
 - $P[\exists i: g_i(x) = g_i(z^*)] = 1 P[g_i(x) \neq g_i(z^*) \text{ for all } i]$ $= 1 \prod_{i=1}^{L} P[g_i(x) \neq g_i(z^*)]$ $= 1 \prod_{i=1}^{L} \left(1 P[g_i(x) = g_i(z^*)]\right)$ $\geq 1 \prod_{i=1}^{L} \left(1 p_1^k\right) = 1 \left(1 p_1^k\right)^L \geq 1 e^{-Lp_1^k}$ $\geq 1 \frac{1}{e^2} \geq 1 1/6 = 5/6$

 z^* hashes to same value as x with probability at least p_1^k

LSH with Hamming Distance

- Fast query time.
 - Check at most 6L + 1 strings and return FAIL if no close string found.
 - Otherwise return closest string found.
- Theorem. If there exists a string z^* in P with $d(x, z^*) \le r$ then with probability at least 2/3 we will return some y in P for which $d(x, y) \le cr$.
- Proof idea.
 - Show that with probability at least 5/6 there are at most 6L far away strings that collides with x.
 - Already showed the probability that z^* is in the same bucket as x in at least one of the L hash tables is at least 5/6.

LSH with Hamming Distance

- Insert time O(kL).
- Expected query time O(L(k+d)).
 - O(L) checks.
 - Each check takes O(k+d) time.

Locality Sensitive Hashing

- Locality sensitive hash function. A family of hash functions \mathcal{H} is (r, cr, p_1, p_2) -sensitive with $p_1 > p_2$ and c > 1 if:
 - $d(x, y) \le r \implies P[h(x) = h(y)] \ge p_1$ (close points)
 - $d(x, y) \ge cr \implies P[h(x) = h(y)] \le p_2$ (distant points)
- Amplification.
 - Choose L hash functions $g_j(x) = h_{1,j}(x) \cdot h_{2,j}(x) \cdots h_{k,j}(x)$, where $h_{i,j}$ is chosen independently and uniformly at random from \mathcal{H} .
- Locality sensitive hashing scheme.
 - Construct L hash tables T_i .
 - Insert(x): For all $1 \le j \le L$ insert x in the list of $g_j(x)$ in T_j .
 - Query(x): For all $1 \le j \le L$ check each element in bucket $g_j(x)$ in T_j . Return the one closest to x. Check at most 6L+1 elements. If no element found at distance less than $c \cdot r$ from x return FAIL.

Jaccard distance and Min Hash

- . Jaccard distance. Jaccard similarity: $\operatorname{Jsim}(A,B) = \frac{|A \cap B|}{|A \cup B|}$
 - Jaccard distance: 1- Jsim(A,B).
 - Hash function: Min Hash. (exercise)

Exercises

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- · Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

а			
b			
С			
d			
е			

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- Collection of vectors.
- Distance between two vectors is the angular distance between them $\operatorname{dist}(u,v) = \angle(u,v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

- Collection of vectors.
- Distance between two vectors is the angular distance between them $dist(u, v) = \angle(u, v)/\pi$.
 - Assume u and v are unit vectors. Then $u \cdot v = \cos(\angle(u, v))$
- · Hash function: Sim Hash.
 - Random projection: Take a random vector r and set $h_r(u) = \text{sign}(r \cdot u)$

• Can show that $P[h(u) = h(v)] = 1 - \angle(u, v)/\pi$.