Approximate Near Neighbor Search:
Locality Sensitive Hashing

Inge Li Gortz

Nearest Neighbor

» Nearest Neighbor. Given a set of points P in a metric space, build a data structure
which given a query point x returns the point in P closest to x.

» Metric. Distance function d is a metric:
1. dx,y)=0

2
3. d
4

* Warmup. 1D: Real line

Query point

Approximate Near Neighbors

. ApproximateNearNeighbor(x): Return a point y such that d(x, y) < ¢ - mind(x, z)
z€P

- c-Approximate r-Near Neighbor: Given a point x if there exists a point z in P such
that d(x, z) < r then return a point y such that d(x, y) < ¢ - r. If no such point z
exists return Fail.

+ Randomised version: Return such an y with probability &.

/)

Locality Sensitive Hashing

+ Locality sensitive hashing. A family of hash functions H is (, cr, p;, p,)-sensitive

with p; > p,and ¢ > 1 if:
< dx,y) <r = Plh(x)=h)]=p, (close points)
« d(x,y) > cr = Plh(x) =h(y)] <p, (distant points)
for h chosen randomly from H.

z hashes to
same value as x
with probability
at least p,

y hashes to
same value as x

with probability
‘ at most p,

no guarantees




Hamming Distance

» P set of n bit strings each of length d.
« Hamming distance. the number of bits where x and y differ:

dx,y) = [{i:x; # v}

x=1]0p1 0 011010 Hamming distance = 3
y=1lol1]1 0o 0 1|10 9 =

+ Hash function. Chose i € {1,..., d} uniformly at random and set i(x) = x;.

+ Example.

—

« What is the probability that h(x) = h(y)?
< d(x,y) <r= Plh(x) =h(y)] =2 1 —r/d

«dx,y) > cr= Plh(x)=h(y)] <1 —-cr/d

LSH with Hamming Distance: Solution 1

« Pick random index i uniformly at random. Let i(x) = x;.

« Bucket: Strings with same hash value A(x).
+ Insert(x): Insert x in the list A[h(x)]

+ NearNeighbour(x): Compute Hamming distance from x to all bitstrings in A[/4(x)]
until find one that is at most cr away. If no such string found return FAIL.

h(x) = x3

a=0011101 h(a)y=1 d=0110011 hd) =1 -nd)
e=1011101 h(e) =1 e

b=0101001  h(b) =0
c¢=0010010 h(c)=1 f=1101101  A(f)=0

f €a
b c d

LSH with Hamming Distance: Solution 2

« Pick k random indexes uniformly and independently at random with replacement:

- 8(x) = x;.x;,-0x;

+ Example. k = 3. g(x) = xpx3% J hashes to
same value asx
= 1[o|[1] o of[1] 0o o g0 =011 ;”t'tx;‘:b;kb"“y

y= 0| 1|1/ O Of1]1 O gly) =111 -

« Probability that g(x) = g(y)?
- d(x,y) <7 = Plg(x) = g0 = (1 - r/d)

- d(x,y) > cr = Plg(x) = g < (1 — crld)k

z hashes to
same value as x
with probability

k
at least p; no guarantees

LSH with Hamming Distance: Solution 2

+ Pick k random indexes uniformly and independently at random with replacement:
- g = X Xp X,

+ Bucket: Strings with same hash value g(x).

8g(x) = Xox427
a=0011101 g(a) =011 d=0110011 g(d) =101
b=0101001 gb)=111 e=1011101 g(e) =011

¢ =0010010 g(c)=000 f=1101101 g(f) =111




LSH with Hamming Distance: Solution 2

« Pick k random indexes uniformly and independently at random with replacement:

. glx) = X; X)X,
« Bucket: Strings with same hash value g(x).

+ Save buckets in a hash table 7" with hash function /.

g(x) = Xxyx42x7

a=0011101 g(a)=011 d=0110011 g(d) =101
b=0101001 g(b)=111 e=1011101 g(e) =011
¢=0010010 g(c)=000 f=1101101 &(f) =111

hy(011,) = 1
hp(111,) =6
hy(000,) = 9
hy(101,) = 1

[ee]~[ofo]s]e]s]-]c]

LSH with Hamming Distance: Solution 2

+ Pick k random indexes uniformly and independently at random with replacement:

. X) = X: X: o X:
80 = XXX, hy(011,) = 1

+ Bucket: Strings with same hash value g(x). hy(111,) = 6
+ Save buckets in a hash table T with hash function /. h(000,) =9
« Insert(x): Insert x in the list of g(x) in T. hy(1015) = 1

+ NearNeighbour(x): Compute Hamming distance from x to all bitstrings in g(x)

LSH with Hamming Distance: Solution 2

z hashes to

y hashes to
same value as x
with probability
at most p}

same value as x
with probability
atleast pf % /

no guarantees

+ What happens when we increase k?

+ Far away strings:

0]
until find one that is at most cr away. If no such string found return FAIL. T
B
8(X) = Xyx4%4 =
a=0011101 g(a)=011 d=0110011 g(d) =101 |~ |
b=0101001 &b =111 e—lOlllOl gle) =011 |4 ]
¢=0010010 g(c) = 000 =1101101 g(f) =111 15
6
7]
8
9
LSH with Hamming Distance: Solution 2
z hashes to y hashes to
same value as x same value as x
with probability with probability
at least p/ at most pf
&
L]

no guarantees

« What happens when we increase k?

» Far away strings: Probability that a far away string hashes to the same bucket as x decrease.




LSH with Hamming Distance: Solution 2

z hashes to y hashes to

same value as x same value as x
with probability with probability
at least pf at most p}

no guarantees

» What happens when we increase k?
« Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

« Close strings:

LSH with Hamming Distance: Solution 2

z hashes to y hashes to
same value as x same value as x
with probability with probability
at least p| at most p}
A
5 ).
y

no guarantees

+ What happens when we increase k?
» Far away strings: Probability that a far away string hashes to the same bucket as x decrease.

+ Close strings: Probability that a close string hashes to the same as x decrease.

LSH with Hamming Distance: Solution 2

z hashes y hashes

to same to same
value as x value as x
‘g

no guarantees

Expected number of far away strings that hashes to same bucket as x:

« F={y:dxy) >cr}.

Forye F wewant Plg(y)=gx)]<1/n:
« Setk =lgn/lg(1/p,)

_ { 1y collides with x
)

0 otherwise

#far away strings colliding with x: X = Z Xy
yeF

ElX1= Y EX]= Y 1/n<1.

yeEF yEF

Markov: P[X > 6] < E[X]/6 < 1/6.

LSH with Hamming Distance: Solution 2

z hashes to y hashes to

same value as x same value as x
with probability with probability
at least p/ at most pf

no guarantees

« What happens when we increase k?
+ Probability that a far away string hashes to the same bucket as x decrease.
« k=1gn/lg(1/p,) = with probability = 5/6 at most 6 far away strings hashes to x’s bucket.

» Probability that a close string hashes to the same as x decrease. &




LSH with Hamming Distance: Solution 3 (Amplification)

« Construct L hash tables T; . Each table T} has its own independently chosen hash function
/7/- and its own independently chosen locality sensitive hash function 8-

« Insert(x): Forall 1 < j < Linsertx in the list of g_/»(x) in T/

. Query(x): Forall 1 < j < L check each element in bucket g]-(x) in ]} Return the one closest
to x if it is at most cr away. Otherwise return FAIL.

Slefe]v]ofafs]e]w]-]c]

= E '

Slele[v]ofo]s[e]v][-]o]

LSH with Hamming Distance

+ Fast query time.

+ Check at most 6L + 1 strings and return FAIL if
no close string found.

+ Otherwise return closest string found.

Show that at
most 6L of
these collides
with x.

with probability
> 5/6

Show that z*
collides with x.

+ Theorem. If there exists a string z* in P with
d(x, z*) < r then with probability at least 2/3 we will
return some y in P for which d(x,y) < cr.

« Proof idea.

+ Show that with probability at least 5/6 there are
at most 6L far away strings that collides with x.

- Already showed the probability that z* is in the
same bucket as x in at least one of the L hash
tables is at least 5/6.

—
no guarantees
(could be MANY)

LSH with Hamming Distance

_ lgn = 1g(1/py)
lg(lpy) " 1g(1/py)’

and L = [2n”], wherep, =1 —r/d andp, = 1 —crld.

+ Claim 1. If there exists a string z* in P with d(x,z*) < r then with probability at least 5/6
we will return some z in P for which d(x,z) < r.

Z* hashes to
+ Probability that z* collides with x: same value as x
) . with probability
+ P[3i: gi(x) = g(z")] =1 - Plg(x) # gi(z*) foralli] atleast pf

L
=1-[]Pla # &1

i=1
L
=1-]] (1= Plg) = gz"1)
z
L
>1-JJa-ph =1-0-pht 21—

i=1

1
21-—=2>1-1/6=5/6
e2

LSH with Hamming Distance

+ Insert time O(kL).
+ Expected query time O(L(k + d)).
+ O(L) checks.
« Each check takes O(k + d) time.




Locality Sensitive Hashing

« Locality sensitive hash function. A family of hash functions 7 is (r, cr, p;. p,)-sensitive
with p; > p, and ¢ > 1 if:
- dx,y) <r = Plh(x)=h()] > p, (close points)
- dx,y) > cr = Plh(x) =h(y)] <p, (distant points)

« Amplification.
. Choose L hash functions gj(x) = th(x) . h2’j(x) hk’f(x), where hl-’_l- is chosen

independently and uniformly at random from #.

« Locality sensitive hashing scheme.

. Construct L hash tables 7} .

- Insert(x): Forall 1 < j < L insert x in the list of g/-(x) in T/
« Query(x): Forall 1 < j < L check each element in bucket g/-(x) in 7} Return the one

closest to x. Check at most 6L + 1 elements. If no element found at distance less
than ¢ - r from x return FAIL.

Jaccard distance and Min Hash

) N ) |[ANnB|
. Jaccard distance. Jaccard similarity: Jsim(A, B) = ————

|AUB]|
» Jaccard distance: 1- Jsim(A,B).

+ Hash function: Min Hash. (exercise)

Exercises

Angular Distance and Sim Hash

+ Collection of vectors.
« Distance between two vectors is the angular distance between them
dist(u, v) = £(u, v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.
« Random projection: Take a random vector r and set /(1) = sign(r - u)




Angular Distance and Sim Hash

+ Collection of vectors.
- Distance between two vectors is the angular distance between them
dist(u, v) = £(u, v)/n.
+ Assume u and v are unit vectors. Then u - v = cos(«£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(u) = sign(r - u)

o|la|lo|TO|o

Angular Distance and Sim Hash

+ Collection of vectors.
« Distance between two vectors is the angular distance between them
dist(u, v) = £(u, v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set /,(u) = sign(r - u)

Elzfel

Angular Distance and Sim Hash

+ Collection of vectors.
- Distance between two vectors is the angular distance between them
dist(u, v) = 2(u, v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(«£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set ,(u) = sign(r - u)

BEEER

Angular Distance and Sim Hash

+ Collection of vectors.
« Distance between two vectors is the angular distance between them
dist(u, v) = £(u, v)/x.
+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

« Random projection: Take a random vector r and set /(1) = sign(r - u)




Angular Distance and Sim Hash

+ Collection of vectors.

- Distance between two vectors is the angular distance between them
dist(u, v) = £(u, v)/x.

+ Assume u and v are unit vectors. Then u - v = cos(«£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set h,(u) = sign(r - u)

Angular Distance and Sim Hash

+ Collection of vectors.

« Distance between two vectors is the angular distance between them
dist(u, v) = £(u, v)/x.

+ Assume u and v are unit vectors. Then u - v = cos(£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set /,(u) = sign(r - u)

Angular Distance and Sim Hash

+ Collection of vectors.

- Distance between two vectors is the angular distance between them
dist(u, v) = 2(u, v)/x.

+ Assume u and v are unit vectors. Then u - v = cos(«£(u, v))
+ Hash function: Sim Hash.

+ Random projection: Take a random vector r and set ,(u) = sign(r - u)

- Can show that P[h(u) = h(v)] =1 — 2(u,v)/x.




