Distributed Algorithms

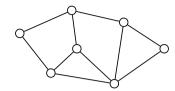
Inge Li Gørtz

Path colouring

• Path coloring. No neighbouring nodes have the same color.

General Model

• Network with n computers (nodes) connected via communication channels (edges).



- Messages. Nodes can exchange messages with neighbors.
- Communication rounds. All nodes perform the same algorithm synchronously in parallel:
 - · Receive messages
 - Process
 - Send

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- Impossible without unique identifiers or randomness:
 - · Each node has a unique name/identifier,

· or each node has a source of random bits.

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

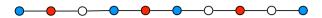
• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $\cdot c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.



- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages M from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - ${f \cdot}$ Receive messages M from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $\cdot c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages M from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- P3C algorithm.
 - c = id.
 - Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages *M* from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $\cdot c \leftarrow \min(\{1,2,3\}\backslash M\})$

Path colouring

• Path coloring. No neighbouring nodes have the same color.

- 3-coloring. Color path with 3 colors {1,2,3}.
- · Assume we have unique identifiers.

- · P3C algorithm.
 - c = id.
 - · Repeat forever:
 - · Send message c to all neighbors.
 - Receive messages M from neighbors.
 - If $c \neq \{1,2,3\}$ and c > all messages received in this round:
 - $c \leftarrow \min(\{1,2,3\}\backslash M\})$

Faster deterministic path coloring

· Assume we have unique identifiers and path is directed.

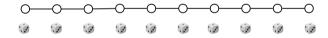
- · Algorithm runs in rounds.
 - In each round reduce the number of colors from 2^x to 2x.
 - · Maintain that it is a proper coloring.
- Round for each node u with color c(u):
 - · Send color to predecessor.
 - Know current color $c_o(u)=c(u)$ and color of successor $c_1(u)$. Consider their bit representations.
 - · Compute:
 - i(u): the *index* of the first bit where $c_0(u)$ and $c_1(u)$ differ.
 - b(u): the value of bit i(u) in $c_0(u)$.
 - Set $c(u) = 2 \cdot i(u) + b(u)$

Correctness

• If we had a proper coloring then it is still a proper coloring:

- Show $c(u) \neq c(v)$. Know $c_0(u) \neq c_1(u)$.
- · 2 cases:
 - i(u) = i(v) = i: Then $b(u) \neq b(v) \Rightarrow c(u) \neq c(v)$.
 - $i(u) \neq i(v)$: no matter how we choose $b(u) \in \{0,1\}$ and $b(v) \in \{0,1\}$ then $c(u) = 2 \cdot i(u) + b(u) \neq 2 \cdot i(v) + b(v) = c(v)$.
- · Reduction in number of colors:
 - Need x bits to represent the 2^x different colors.
 - Number of different colors is 2x: we have $0 \le c(u) \le 2x 1$.

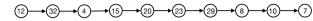
Randomized path coloring



- Each node u has a flag s(u) that indicates it has stopped.
- In each round:
 - Each node u that is not stopped picks a color $c(u) \in \{1,2,3\}$ uniformly at random.
 - Send new color c(u) to neighbors.
 - If new color different from the neighbors colors set s(u) = 1.
- Consider node u:
 - Probability that *u* gets a new color in a round?
 - Expected number of rounds before *u* has a color?
 - Probability that u does not have a color after k rounds?

Faster deterministic path coloring

· Assume we have unique identifiers and path is directed.



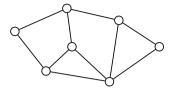
- · Algorithm runs in rounds.
 - · Initially, color = id.
 - Continue until at most 6 colors: $O(\log^* n)$ rounds
 - In each round reduce the number of colors from 2^x to 2x.
 - Use the PC3 algorithm to reduce the number of colors from 6 to 3. 3 rounds

Randomized path coloring

- How many rounds do we need to get that the probability that u does not have a color yet is at most $\frac{1}{n^{C+1}}$ for some constant C?
- Probability that there is a node that did not stopped after this many rounds:
- · With high probability all nodes have stopped.

Congest Model

• Network with n computers (nodes) connected via communication channels (edges).



- Identifiers. Nodes has a unique identifier id: $V \to \{1,2,\ldots,n^c\}$ for some constant c.
- Messages. Nodes can exchange messages with neighbors.
- Communication rounds. All nodes perform the same algorithm synchronously in parallel:
 - · Receive messages
 - Process
 - Send
- Message size. In each round over each edge send message of size O(log n) bits.