
Weekplan: Dynamic Connectivity

Philip Bille Inge Li Gørtz Christian Wulff-Nilsen

References and Reading

[1] Faster Deterministic Fully-Dynamic Graph Connectivity, C. Wulff-Nilsen, SODA 2013: 1757–1769.

We recommend reading [1] until and including Section 3.

Erratum for [1]: on Page 4, line 10, it should read log(n(u)/n(v)) +O(1).

Exercises

1 Worst-case time

1.1 What is the worst-case update time of the data structure in the slides?

1.2 What is its worst-case query time?

2 Search procedures with distinct number of edges explored In the examples in the slides showing the two

parallel search procedures after an edge deletion, all level i-edges of a level i-cluster are explored. This is not true

in general.

In the general case, let Pu and Pv be the search procedure from Cu and from Cv , respectively. We can use the

following approach to handle an edge deletion and consider two cases similar to those in the slides:

1. The two search procedures visit the same cluster Cuv (the parent cluster is not split). Assume Cuv was first

visited by Pu (the other case is symmetric). Let Cu be the clusters visited by Pu. Let Cv be the clusters visited

by Pv , excluding Cuv . If
∑

w∈Cu
n(w)≤
∑

w∈Cv
n(w), the edges visited by Pu (minus the edge to Cuv have their

levels increased; otherwise, the edges visited by Pv have their levels increased.

2. The two search procedures visit disjoint sets of clusters (the parent cluster is split). Assume Pu is the first to

finish (the other case is symmetric). Then the levels of edges explored by Pu are increased, provided that this

does not violate the invariant. If the invariant is violated, then Pv finishes its search (visiting all remaining

edges reachable from Cv) and the levels of its visited edges are increased.

2.1 Argue that the invariant is maintained using the above approach and show that the edge level increases

suffice to pay for the two search procedures (use the same level of detail as in the slides).

3 Updates to example graph The following example shows a graph G with edge levels indicated.

e

f

c

d

ba g h i

1

1

1

1 0

2

2 2

2

2

3.1 Explain why the invariant of the data structure for G is violated.

3.2 Consider a modified version of G where k isolated vertices are added. Show that k = 11 is the smallest k

needed to satisfy the invariant. What is ℓmax for this value of k?

1

3.3 Show the cluster forest C for G with k = 11. You may ignore the k isolated vertices in your drawing.

3.4 Show G and C after insert(c, e). What changes occur in C ?

3.5 Show G and C after the additional update delete(d, f) (i.e., after insert(c, e)).

3.6 Show G and C after the additional update delete(c, e) (i.e., after insert(c, e) and delete(d, f)).

4 Cluster sizes and edge-bitmaps

4.1 Show bitmaps edge(u) and sizes n(u) for all nodes u in the cluster forestC that you obtained in Exercise 3.3.

4.2 Show that edge(w) is the bitwise or of edge(u) and edge(v) where C(w) is the merge of C(u) and C(v).

5 Local trees Let node u have children a, b, and c in C with n(a) = 1, n(b) = 4, and n(c) = 5. Let another

node v have children d, e, f , and g with n(d) = n(e) = 2 and n(f) = n(g) = 4.

5.1 Show local trees L(u) and L(v).

5.2 Suppose an update to G results in merging u and v into u. Using the description in the first paragraph of

Section 3.6 of [1], show how to obtain L(u) resulting from the merge.

5.3 Argue that the worst-case time to merge two local trees is O(log n) and why this is not a problem for the

amortized analysis. Hint: The number of cluster pairs merged is at least the number of edge level increases.

5.4 An edge deletion in G may also involve splitting a cluster (or multiple clusters) as we saw in the lecture.

Explain how to split the corresponding local tree in two in O(log n) time. Argue that this is not a problem for

the amortized analysis. Hint: For the last part, show that only O(log n) clusters can be split per edge deleted

in G.

6 Height of CL Show that CL has height O(log n) where n= |V |. Hint: Show first that for a node u and a child

v of u in C , v has depth at most lg(n(u)/n(v)) +O(1) in L(u). Then use a telescoping sums argument.

7 Initial/final graph In [1], it is assumed that we start with E = ;.

7.1 Why is this important for the analysis?

7.2 Adapt and analyze the data structure for the case where we start with E arbitrary and end the update

sequence with E = ;. What is the amortized update time for the adapted data structure?

7.3 How bad can the amortized update time be if we do not assume that E is empty at the beginning nor at the

end of the update sequence?

8 Balanced binary search trees As explained in [1], each leaf ofCL has a balanced binary search tree (BBST).

8.1 Explain how the BBSTs are used by the data structure.

8.2 Explain why for the O(log2 n) amortized update bound, these BBSTs are not needed. What simpler data

structure can be used instead in each leaf? Try to avoid increasing the O(m+ n log n) space bound.

9 Incremental connectivity In the incremental connectivity problem, we only allow insertions. As mentioned

in [1], this can be viewed as the union-find problem. Explain why this is the case.

2

