Weekplan: Dynamic Connectivity

Philip Bille Inge Li Ggrtz Christian Wulff-Nilsen

References and Reading

[1] Faster Deterministic Fully-Dynamic Graph Connectivity, C. Wulff-Nilsen, SODA 2013: 1757-1769.

We recommend reading [1] until and including Section 3.
Erratum for [1]: on Page 4, line 10, it should read log(n(u)/n(v)) + O(1).

Exercises
1 Worst-case time
1.1 What is the worst-case update time of the data structure in the slides?

1.2 What is its worst-case query time?

2 Search procedures with distinct number of edges explored In the examples in the slides showing the two
parallel search procedures after an edge deletion, all level i-edges of a level i-cluster are explored. This is not true
in general.

In the general case, let P, and P, be the search procedure from C, and from C,, respectively. We can use the
following approach to handle an edge deletion and consider two cases similar to those in the slides:

1. The two search procedures visit the same cluster C,, (the parent cluster is not split). Assume C,, was first
visited by P, (the other case is symmetric). Let 6, be the clusters visited by P,. Let 6, be the clusters visited
by P,, excluding C,,,,. If ZWE% n(w) < ZWE% n(w), the edges visited by P, (minus the edge to C,, have their
levels increased; otherwise, the edges visited by P, have their levels increased.

2. The two search procedures visit disjoint sets of clusters (the parent cluster is split). Assume P, is the first to
finish (the other case is symmetric). Then the levels of edges explored by P, are increased, provided that this
does not violate the invariant. If the invariant is violated, then P, finishes its search (visiting all remaining
edges reachable from C,) and the levels of its visited edges are increased.

2.1 Argue that the invariant is maintained using the above approach and show that the edge level increases
suffice to pay for the two search procedures (use the same level of detail as in the slides).

3 Updates to example graph The following example shows a graph G with edge levels indicated.

3.1 Explain why the invariant of the data structure for G is violated.

3.2 Consider a modified version of G where k isolated vertices are added. Show that k = 11 is the smallest k
needed to satisfy the invariant. What is £, for this value of k?

3.3 Show the cluster forest 6 for G with k = 11. You may ignore the k isolated vertices in your drawing.
3.4 Show G and ¥ after insert(c,e). What changes occur in €?
3.5 Show G and ¥ after the additional update delete(d, f) (i.e., after insert(c,e)).

3.6 Show G and ¥ after the additional update delete(c,e) (i.e., after insert(c,e) and delete(d, f)).

4 Cluster sizes and edge-bitmaps
4.1 Show bitmaps edge(u) and sizes n(u) for all nodes u in the cluster forest 6 that you obtained in Exercise 3.3.
4.2 Show that edge(w) is the bitwise or of edge(u) and edge(v) where C(w) is the merge of C(u) and C(v).
5 Local trees Let node u have children a, b, and ¢ in € with n(a) = 1, n(b) = 4, and n(c) = 5. Let another
node v have children d, e, f, and g with n(d) =n(e) =2 and n(f) =n(g) =4.
5.1 Show local trees L(u) and L(v).

5.2 Suppose an update to G results in merging u and v into u. Using the description in the first paragraph of
Section 3.6 of [1], show how to obtain L(u) resulting from the merge.

5.3 Argue that the worst-case time to merge two local trees is O(logn) and why this is not a problem for the
amortized analysis. Hint: The number of cluster pairs merged is at least the number of edge level increases.

5.4 An edge deletion in G may also involve splitting a cluster (or multiple clusters) as we saw in the lecture.
Explain how to split the corresponding local tree in two in O(log n) time. Argue that this is not a problem for
the amortized analysis. Hint: For the last part, show that only O(logn) clusters can be split per edge deleted
in G.

6 Height of ¥, Show that %6; has height O(logn) where n = |V|. Hint: Show first that for a node u and a child
v of uin 6, v has depth at most 1g(n(u)/n(v)) + O(1) in L(u). Then use a telescoping sums argument.
7 Initial/final graph In [1], it is assumed that we start with E =).

7.1 Why is this important for the analysis?

7.2 Adapt and analyze the data structure for the case where we start with E arbitrary and end the update
sequence with E = (). What is the amortized update time for the adapted data structure?

7.3 How bad can the amortized update time be if we do not assume that E is empty at the beginning nor at the
end of the update sequence?

8 Balanced binary search trees As explained in [1], each leaf of %6, has a balanced binary search tree (BBST).
8.1 Explain how the BBSTs are used by the data structure.

8.2 Explain why for the O(log®n) amortized update bound, these BBSTs are not needed. What simpler data
structure can be used instead in each leaf? Try to avoid increasing the O(m + nlogn) space bound.

9 Incremental connectivity In the incremental connectivity problem, we only allow insertions. As mentioned
in [1], this can be viewed as the union-find problem. Explain why this is the case.

