
1 / 22

Dynamic Connectivity

Christian Wulff-Nilsen

Algorithmic Techniques for Modern Data Models

DTU

November 28, 2025

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

• Initial graph: |V | = n vertices, E = ∅

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

• Initial graph: |V | = n vertices, E = ∅
• Updates and queries are revealed one by one in an online sequence

Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

• Initial graph: |V | = n vertices, E = ∅
• Updates and queries are revealed one by one in an online sequence

• We give a data structure with:

◦ O(log n) worst-case query time

◦ O(log2 n) amortized update time

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i
• We have E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Eℓmax

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i
• We have E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Eℓmax

• Connected components of Gi are called i-clusters or just clusters

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i
• We have E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Eℓmax

• Connected components of Gi are called i-clusters or just clusters

• Invariant: any i-cluster contains at most ⌊n/2i⌋ vertices

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i
• We have E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Eℓmax

• Connected components of Gi are called i-clusters or just clusters

• Invariant: any i-cluster contains at most ⌊n/2i⌋ vertices

• 0-clusters are the connected components of G

Edge Levels and Clusters

3 / 22

• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i
• We have E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Eℓmax

• Connected components of Gi are called i-clusters or just clusters

• Invariant: any i-cluster contains at most ⌊n/2i⌋ vertices

• 0-clusters are the connected components of G
• ℓmax-clusters are vertices of V (why?)

Clusters

4 / 22

0-cluster

1-cluster

Level 0

Level 2

Level 1

2-cluster

Cluster forest

5 / 22

• The cluster forest of G is a forest C of rooted trees where each node

u corresponds to a cluster C(u)

Cluster forest

5 / 22

• The cluster forest of G is a forest C of rooted trees where each node

u corresponds to a cluster C(u)
• A node u at level i < ℓmax has as children the level (i+ 1)-nodes v

such that C(v) ⊆ C(u)

Cluster forest

5 / 22

• The cluster forest of G is a forest C of rooted trees where each node

u corresponds to a cluster C(u)
• A node u at level i < ℓmax has as children the level (i+ 1)-nodes v

such that C(v) ⊆ C(u)
• Roots of C correspond to connected components of G and leaves of

C correspond to vertices of G

Cluster forest

5 / 22

• The cluster forest of G is a forest C of rooted trees where each node

u corresponds to a cluster C(u)
• A node u at level i < ℓmax has as children the level (i+ 1)-nodes v

such that C(v) ⊆ C(u)
• Roots of C correspond to connected components of G and leaves of

C correspond to vertices of G
• Each node u of C is associated with its size n(u) which is the

number of leaves in the subtree of C rooted at u

Cluster forest

6 / 22

Cluster forest

6 / 22

Size 9

Answering Queries

7 / 22

Answering Queries

7 / 22

• To determine if vertices u and v are connected in G, traverse the

leaf-to-root paths from u and v in C

Answering Queries

7 / 22

• To determine if vertices u and v are connected in G, traverse the

leaf-to-root paths from u and v in C
• Then u and v are connected in G iff the roots are the same

Answering Queries

7 / 22

• To determine if vertices u and v are connected in G, traverse the

leaf-to-root paths from u and v in C
• Then u and v are connected in G iff the roots are the same

• Query time O(log n)

Answering Queries

7 / 22

• To determine if vertices u and v are connected in G, traverse the

leaf-to-root paths from u and v in C
• Then u and v are connected in G iff the roots are the same

• Query time O(log n)

u

v

v

u

Handling insert(u, v)

8 / 22

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

• Otherwise, ru and rv are merged

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

• Otherwise, ru and rv are merged

• This corresponds to merging C(ru) and C(rv)

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

• Otherwise, ru and rv are merged

• This corresponds to merging C(ru) and C(rv)

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

• Otherwise, ru and rv are merged

• This corresponds to merging C(ru) and C(rv)

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

• Otherwise, ru and rv are merged

• This corresponds to merging C(ru) and C(rv)

Handling insert(u, v)

8 / 22

• Initialize ℓ(u, v)← 0
• ru, rv : roots of trees of C containing u and v, respectively

• If ru = rv , C is not changed

• Otherwise, ru and rv are merged

• This corresponds to merging C(ru) and C(rv)

Handling delete(u, v)

9 / 22

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

• Let Mi be the multigraph with (i+ 1)-clusters as vertices and level

i-edges of G as edges

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

• Let Mi be the multigraph with (i+ 1)-clusters as vertices and level

i-edges of G as edges

• In Mi, execute two standard search procedures in parallel, one

starting in Cu, the other starting in Cv

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

• Let Mi be the multigraph with (i+ 1)-clusters as vertices and level

i-edges of G as edges

• In Mi, execute two standard search procedures in parallel, one

starting in Cu, the other starting in Cv

• Terminate both procedures when in one of the following two cases:

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

• Let Mi be the multigraph with (i+ 1)-clusters as vertices and level

i-edges of G as edges

• In Mi, execute two standard search procedures in parallel, one

starting in Cu, the other starting in Cv

• Terminate both procedures when in one of the following two cases:

◦ a vertex of Mi is explored by both search procedures

Handling delete(u, v)

9 / 22

• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

• Let Mi be the multigraph with (i+ 1)-clusters as vertices and level

i-edges of G as edges

• In Mi, execute two standard search procedures in parallel, one

starting in Cu, the other starting in Cv

• Terminate both procedures when in one of the following two cases:

◦ a vertex of Mi is explored by both search procedures

◦ one of the search procedures has no more edges to explore

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A vertex of Mi is explored by both search procedures

10 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

A search procedure has no more edges to explore

11 / 22

v u

Cv Cu

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

v u

Cv Cu

C

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

• Otherwise, C is be split in two, one part containing Cu and one

containing Cv

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

• Otherwise, C is be split in two, one part containing Cu and one

containing Cv

v u

Cv Cu

C

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

• Otherwise, C is be split in two, one part containing Cu and one

containing Cv

v u

Cv Cu

Updates to C

12 / 22

• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

• Otherwise, C is be split in two, one part containing Cu and one

containing Cv

v u

Cv Cu

• If i > 0, recurse on level i− 1

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

v u

Cv Cu

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

v u

Cv Cu

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

v u

Cv

Cu

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

v u

Cv Cu

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

v u

Cv Cu

Edge Level Increases after Search

13 / 22

• Recall: each node w of C is associated with its size n(w)
• n(w) is the number of vertices of V in cluster C(w)
• For the search procedure that explored clusters of smallest total size,

all its visited edges have their levels increased

v u

Cv

Cu

Maintaining the Invariant

14 / 22

Maintaining the Invariant

14 / 22

• Parent level i-cluster C has size at most ⌊n/2i⌋

v u

Cv Cu

C

Maintaining the Invariant

14 / 22

• Parent level i-cluster C has size at most ⌊n/2i⌋

v u

Cv Cu

C

• The smaller side has size at most ⌊n/2i+1⌋

Maintaining the Invariant

14 / 22

• Parent level i-cluster C has size at most ⌊n/2i⌋

v u

Cv Cu

C

• The smaller side has size at most ⌊n/2i+1⌋ since otherwise, C
would have size ≥ 2(⌊n/2i+1⌋+ 1) > 2 · n/2i+1 ≥ ⌊n/2i⌋

Maintaining the Invariant

14 / 22

• Parent level i-cluster C has size at most ⌊n/2i⌋

v u

Cv Cu

C

• The smaller side has size at most ⌊n/2i+1⌋ since otherwise, C
would have size ≥ 2(⌊n/2i+1⌋+ 1) > 2 · n/2i+1 ≥ ⌊n/2i⌋

• Thus, the invariant is still satisfied after merging level (i+ 1)-clusters

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

◦ Thus, we cannot ensure O(1) time per edge visited

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

◦ Thus, we cannot ensure O(1) time per edge visited

◦ We will instead show how to get O(log n) time per edge visited

Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

◦ Thus, we cannot ensure O(1) time per edge visited

◦ We will instead show how to get O(log n) time per edge visited

◦ This will give O(log2 n) amortized update time

Traversing a single graph edge

16 / 22

Tree in cluster forest C

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Example with ℓmax = 5:

1 14

u edge(u) = 10010

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Maintaining these bitmaps can be done efficiently (exercise)

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Maintaining these bitmaps can be done efficiently (exercise)

• Since C is binary, we can traverse a single edge of a multigraph in

O(log n) time using the edge-bit maps (how?)

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Maintaining these bitmaps can be done efficiently (exercise)

• Since C is binary, we can traverse a single edge of a multigraph in

O(log n) time using the edge-bit maps (how?)

Tree in cluster forest C

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Maintaining these bitmaps can be done efficiently (exercise)

• Since C is binary, we can traverse a single edge of a multigraph in

O(log n) time using the edge-bit maps (how?)

• This gives the desired time bound for the search procedures

Assuming a Binary Cluster Forest C

17 / 22

• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Maintaining these bitmaps can be done efficiently (exercise)

• Since C is binary, we can traverse a single edge of a multigraph in

O(log n) time using the edge-bit maps (how?)

• This gives the desired time bound for the search procedures

• However, we need to deal with the case where C is not binary

Node Ranks

18 / 22

• Recall: for each node u in C, n(u) is the number of leaves in the

subtree of C rooted at u

Node Ranks

18 / 22

• Recall: for each node u in C, n(u) is the number of leaves in the

subtree of C rooted at u
• Define the rank of u as rank(u) = ⌊lg n(u)⌋

Rank Trees

19 / 22

• Let u be a non-leaf node in C

Rank Trees

19 / 22

• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C

Rank Trees

19 / 22

• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C
• Rank trees of u are formed by repeating the following procedure as

long as two nodes of R have the same rank:

Rank Trees

19 / 22

• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C
• Rank trees of u are formed by repeating the following procedure as

long as two nodes of R have the same rank:

◦ Remove from R two nodes r1 and r2 with rank(r1) = rank(r2)

Rank Trees

19 / 22

• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C
• Rank trees of u are formed by repeating the following procedure as

long as two nodes of R have the same rank:

◦ Remove from R two nodes r1 and r2 with rank(r1) = rank(r2)
◦ Attach r1 and r2 to a parent r of rank rank(r) = rank(r1) + 1

Rank Trees

19 / 22

• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C
• Rank trees of u are formed by repeating the following procedure as

long as two nodes of R have the same rank:

◦ Remove from R two nodes r1 and r2 with rank(r1) = rank(r2)
◦ Attach r1 and r2 to a parent r of rank rank(r) = rank(r1) + 1
◦ Add r to R

Rank Trees

19 / 22

• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C
• Rank trees of u are formed by repeating the following procedure as

long as two nodes of R have the same rank:

◦ Remove from R two nodes r1 and r2 with rank(r1) = rank(r2)
◦ Attach r1 and r2 to a parent r of rank rank(r) = rank(r1) + 1
◦ Add r to R

1

1

0 0000

u

1

0
2

Local trees

20 / 22

• Let r1, r2, . . . , rk be the final set of rank tree roots in R ordered by

decreasing rank:

rank(r1) > rank(r2) > · · · > rank(rk)

Local trees

20 / 22

• Let r1, r2, . . . , rk be the final set of rank tree roots in R ordered by

decreasing rank:

rank(r1) > rank(r2) > · · · > rank(rk)

• Local tree L(u) for k = 5:

u

r5 = rk

r1
r2

r3
r4

Local trees

20 / 22

• Let r1, r2, . . . , rk be the final set of rank tree roots in R ordered by

decreasing rank:

rank(r1) > rank(r2) > · · · > rank(rk)

• Local tree L(u) for k = 5:

u

r5 = rk

r1
r2

r3
r4

• Replace edges from u to its children in C by L(u)

Local trees

20 / 22

• Let r1, r2, . . . , rk be the final set of rank tree roots in R ordered by

decreasing rank:

rank(r1) > rank(r2) > · · · > rank(rk)

• Local tree L(u) for k = 5:

u

r5 = rk

r1
r2

r3
r4

• Replace edges from u to its children in C by L(u)
• Doing this for all u turns C into forest CL of binary trees

Properties of CL

21 / 22

• CL has height O(log n) (exercise)

Properties of CL

21 / 22

• CL has height O(log n) (exercise)

• Merging nodes u and v in C involves merging L(u) and L(v) in CL

Properties of CL

21 / 22

• CL has height O(log n) (exercise)

• Merging nodes u and v in C involves merging L(u) and L(v) in CL
• Splitting a node u involves splitting L(u)

Properties of CL

21 / 22

• CL has height O(log n) (exercise)

• Merging nodes u and v in C involves merging L(u) and L(v) in CL
• Splitting a node u involves splitting L(u)
• This can be done in O(log n) time per merge/split and will not

increase the asymptotic update time (exercise)

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)
• Space:

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)
• Space: O(m+ n log n) words

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)
• Space: O(m+ n log n) words

• Can be improved to O(m+ n) by compressing paths in CL, whose

interior nodes have degree 2, to single edges

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)
• Space: O(m+ n log n) words

• Can be improved to O(m+ n) by compressing paths in CL, whose

interior nodes have degree 2, to single edges

• Using a more complicated data structure, both update and query time

can be improved by a factor of log log n

Performance of data structure

22 / 22

• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)
• Space: O(m+ n log n) words

• Can be improved to O(m+ n) by compressing paths in CL, whose

interior nodes have degree 2, to single edges

• Using a more complicated data structure, both update and query time

can be improved by a factor of log log n
• This is still the fastest deterministic data structure known

	Problem Definition
	Edge Levels and Clusters
	Clusters
	Cluster forest
	Cluster forest
	Answering Queries
	Handling insert(u,v)
	Handling delete(u,v)
	A vertex of Mi is explored by both search procedures
	A search procedure has no more edges to explore
	Updates to C
	Edge Level Increases after Search
	Maintaining the Invariant
	Overall Amortized Analysis
	Traversing a single graph edge
	Assuming a Binary Cluster Forest C
	Node Ranks
	Rank Trees
	Local trees
	Properties of CL
	Performance of data structure

