Dynamic Connectivity

Christian Wulff-Nilsen
Algorithmic Techniques for Modern Data Models
DTU

November 28, 2025

1/22"

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):
o insert(u,v): inserts edge (u,v)in £
o delete(u,v): deletes edge (u,v) from E

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

o delete(u,v): deletes edge (u,v) from E

o connected(u,v): reports whether vertices v and v are
connected in G

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

o delete(u,v): deletes edge (u,v) from E

o connected(u,v): reports whether vertices v and v are
connected in G

e Wereferto insert and delete as update operations and to
connected as a query operation

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

o delete(u,v): deletes edge (u,v) from E

o connected(u,v): reports whether vertices v and v are
connected in G

e Wereferto insert and delete as update operations and to
connected as a query operation
e Initial graph: |V | = n vertices, E = ()

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

o delete(u,v): deletes edge (u,v) from E

o connected(u,v): reports whether vertices v and v are
connected in G

e Wereferto insert and delete as update operations and to
connected as a query operation

e Initial graph: |V'| = n vertices, £ =)

e Updates and queries are revealed one by one in an online sequence

2/22 "

Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

o delete(u,v): deletes edge (u,v) from E

o connected(u,v): reports whether vertices v and v are
connected in G

e Wereferto insert and delete as update operations and to
connected as a query operation

e Initial graph: |V'| = n vertices, £ =)

e Updates and queries are revealed one by one in an online sequence

e We give a data structure with:

o O(logn) worst-case query time
o O(log® n) amortized update time

2/22 "

Edge Levels and Clusters

e Our data structure will maintain a level £(e) for each e € E where
0 </{(e) < lmax = |logn]

3/22 "

Edge Levels and Clusters

e Our data structure will maintain a level £(e) for each e € E where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G
containing edges e with £(e) > i

3/22 "

Edge Levels and Clusters

e Our data structure will maintain a level £(e) for each e € E where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G
containing edges e with £(e) > i

() WehaveE:EOI_DEli_DEQQ---Z_DEg

max

3/22 "

Edge Levels and Clusters

e Our data structure will maintain a level ¢(e) for each e € F where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G
containing edges e with £(e) > i

° WehaveE:EOI_DElZ_DEQQ---Z_)EgmaX

e Connected components of (&; are called i-clusters or just clusters

3/22 "

Edge Levels and Clusters

e Our data structure will maintain a level ¢(e) for each e € F where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G
containing edges e with £(e) > i

° WehaveE:EOI_DElZ_DEQQ---Z_)EgmaX

e Connected components of (&; are called i-clusters or just clusters

e Invariant: any i-cluster contains at most |n /2| vertices

3/22 "

Edge Levels and Clusters

e Our data structure will maintain a level ¢(e) for each e € F where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G

containing edges e with £(e) > i

WehaveE:Eo :_>E1 :_>E2 2 :_)Egmax

Connected components of (G; are called i-clusters or just clusters

Invariant: any i-cluster contains at most |n/2"| vertices

O-clusters are the connected components of &G

3/22 "

Edge Levels and Clusters

e Our data structure will maintain a level ¢(e) for each e € F where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G

containing edges e with £(e) > i

WehaveE:Eo :_>E1 :_>E2 DRI :_)Egmax

Connected components of (G; are called i-clusters or just clusters

Invariant: any i-cluster contains at most |n/2"| vertices

O-clusters are the connected components of &G

¢ max-clusters are vertices of V' (why?)

3/22 "

Clusters

O-cluster

\

Level 2

Level 1

2-cluster Level 0

1-cluster

4/22"

Cluster forest

e The cluster forest of (G is a forest C of rooted trees where each node
u corresponds to a cluster C'(u)

5/22 "

Cluster forest

e The cluster forest of (G is a forest C of rooted trees where each node
u corresponds to a cluster C'(u)

e Anode u at level i < £y« has as children the level (¢ + 1)-nodes v
such that C'(v) C C'(u)

5/22 "

Cluster forest

e The cluster forest of (5 is a forest C of rooted trees where each node
u corresponds to a cluster C'(u)

e Anode u atlevel i < £,,x has as children the level (i + 1)-nodes v
such that C'(v) C C'(u)

e Roots of C correspond to connected components of G and leaves of
C correspond to vertices of GG

5/22 "

Cluster forest

e The cluster forest of (5 is a forest C of rooted trees where each node
u corresponds to a cluster C'(u)

e Anode u atlevel i < £,,x has as children the level (i + 1)-nodes v
such that C'(v) C C'(u)

e Roots of C correspond to connected components of G and leaves of
C correspond to vertices of GG

e Each node u of C is associated with its size n(u) which is the
number of leaves in the subtree of C rooted at u

5/22 "

Answering Queries

7/22"

Answering Queries

e To determine if vertices u and v are connected in (G, traverse the
leaf-to-root paths from v and v in C

7/22"

Answering Queries

e To determine if vertices u and v are connected in (G, traverse the
leaf-to-root paths from v and v in C
e Then uw and v are connected in (iff the roots are the same

7/22"

Answering Queries

e To determine if vertices u and v are connected in (7, traverse the
leaf-to-root paths from v and v in C

e Then u and v are connected in (G iff the roots are the same

e Query time O(logn)

7/22"

Answering Queries

e To determine if vertices uw and v are connected in GG, traverse the
leaf-to-root paths from v and v in C

e Then u and v are connected in (G iff the roots are the same

e Query time O(logn)

7/22"

Handling insert(u, v)

g/22 '

Handling insert(u, v)

e Initialize £(u,v) < 0

g/22 '

Handling insert(u, v)

e Initialize £(u,v) < 0
e 1,7y roots of trees of C containing u and v, respectively

g/22 '

Handling insert(u, v)

e Initialize £(u,v) < 0
e 1,7y roots of trees of C containing u and v, respectively
e Ifr, =r,, Cisnotchanged

g/22 '

Handling insert(u, v)

Initialize £(u, v) < 0

ru, Ty: roots of trees of C containing u and v, respectively
If r, = 7, C is not changed

Otherwise, 7, and r,, are merged

g/22 '

Handling insert(u, v)

Initialize £(u, v) < 0

ru, Ty: roots of trees of C containing u and v, respectively
If r, = 7, C is not changed

Otherwise, 7, and r,, are merged

This corresponds to merging C'(r,) and C'(r)

g/22 '

Handling insert(u, v)

Initialize ¢(u, v) < 0

Tu, Ty: roots of trees of C containing u and v, respectively
If r,, = 7, C is not changed

Otherwise, 7, and r,, are merged

This corresponds to merging C'(r,) and C'(r)

g/22 '

Handling insert(u, v)

Initialize ¢(u, v) < 0

Tu, Ty: roots of trees of C containing u and v, respectively
If r,, = 7, C is not changed

Otherwise, 7, and r,, are merged

This corresponds to merging C'(r,) and C'(r)

A%

g/22 '

Handling insert(u, v)

Initialize ¢(u, v) < 0

Tu, Ty: roots of trees of C containing u and v, respectively
If r,, = 7, C is not changed

Otherwise, 7, and r,, are merged

This corresponds to merging C'(r,) and C'(r)

a'%

g/22 '

Handling insert(u, v)

Initialize ¢(u, v) < 0

Tu, Ty: roots of trees of C containing u and v, respectively
If r,, = 7, C is not changed

Otherwise, 7, and r,, are merged

This corresponds to merging C'(r,) and C'(r)

()

_/

g/22 '

Handling delete(u, v)

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
w and v

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
u and v
e Assume C, #* (), since otherwise, C is not changed

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing

wand v
e Assume C, #* (), since otherwise, C is not changed
e Let M; be the multigraph with (¢ 4+ 1)-clusters as vertices and level

1-edges of G as edges

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
u and v

e Assume C, #* (), since otherwise, C is not changed

e Let M; be the multigraph with (¢ 4+ 1)-clusters as vertices and level
1-edges of G as edges

e In M;, execute two standard search procedures in parallel, one
starting in C,, the other starting in C,

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
u and v

e Assume C, #* (), since otherwise, C is not changed

e Let M; be the multigraph with (¢ 4+ 1)-clusters as vertices and level
1-edges of G as edges

e In M;, execute two standard search procedures in parallel, one
starting in C,,, the other starting in C,

e Terminate both procedures when in one of the following two cases:

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
u and v

e Assume C, #* (), since otherwise, C is not changed

e Let M; be the multigraph with (¢ 4+ 1)-clusters as vertices and level
1-edges of G as edges

e In M;, execute two standard search procedures in parallel, one
starting in C,,, the other starting in C,

e Terminate both procedures when in one of the following two cases:

o a vertex of M; is explored by both search procedures

9/22 "

Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
u and v

e Assume C, #* (), since otherwise, C is not changed

e Let M; be the multigraph with (¢ 4+ 1)-clusters as vertices and level
1-edges of G as edges

e In M;, execute two standard search procedures in parallel, one
starting in C,,, the other starting in C,

e Terminate both procedures when in one of the following two cases:

o a vertex of M; is explored by both search procedures
o one of the search procedures has no more edges to explore

9/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A vertex of)/, is explored by both search procedures

10/22 "

A search procedure has no more edges to explore

11/22 "

A search procedure has no more edges to explore

11/22 "

A search procedure has no more edges to explore

11/22 "

A search procedure has no more edges to explore

11/22 "

A search procedure has no more edges to explore

11/22 "

A search procedure has no more edges to explore

11/22 "

A search procedure has no more edges to explore

11/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u,v) is still connected so C' remains a level i-cluster

12/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u,v) is still connected so C' remains a level i-cluster

12/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u,v) is still connected so C' remains a level i-cluster

12/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u,v) is still connected so C' remains a level i-cluster
e Otherwise, C' is be split in two, one part containing C,, and one

containing C),

12/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u,v) is still connected so C' remains a level i-cluster

e Otherwise, C' is be split in two, one part containing C,, and one
containing C),

12/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u, v) is still connected so C' remains a level i-cluster

e Otherwise, C' is be split in two, one part containing C,, and one
containing C),

12/22 "

Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u, v) is still connected so C' remains a level i-cluster

e Otherwise, C' is be split in two, one part containing C,, and one
containing C),

e Ifz > 0, recurseonlevel? — 1

12/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)
e n(w) is the number of vertices of V' in cluster C'(w)

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Edge Level Increases after Search

e Recall: each node w of C is associated with its size n.(w)

e n(w) is the number of vertices of V' in cluster C'(w)

e F[or the search procedure that explored clusters of smallest total size,
all its visited edges have their levels increased

13/22 "

Maintaining the Invariant

14/22 "

Maintaining the Invariant

o Parent level i-cluster C has size at most |n/2! |

14/22 "

Maintaining the Invariant

o Parent level i-cluster C has size at most |n/2! |

e The smaller side has size at most |n/2!™ |

14/22 "

Maintaining the Invariant

o Parent level i-cluster C has size at most |n/2! |

e The smaller side has size at most |n/2"™!| since otherwise, C
would have size > 2(|n/2t | +1) > 2. n/2'Tt > |n/2"]

14/22 "

Maintaining the Invariant

o Parent level i-cluster C has size at most |n/2! |

e The smaller side has size at most |n/2"™!| since otherwise, C
would have size > 2(|n /27| +1) > 2-n/2°7t > |n/2¢

e Thus, the invariant is still satisfied after merging level (i + 1)-clusters
|

14/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
e For the analysis, we let each edge pay O(1) credits when its level is
increased

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
e For the analysis, we let each edge pay O(1) credits when its level is
increased

e The search on the smaller side is thus paid for by its visited edges

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited

e For the analysis, we let each edge pay O(1) credits when its level is
increased

e The search on the smaller side is thus paid for by its visited edges

e The other search visits the same number of edges (plus/minus 1)

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited

e For the analysis, we let each edge pay O(1) credits when its level is
increased

e The search on the smaller side is thus paid for by its visited edges

e The other search visits the same number of edges (plus/minus 1)

e Hence, the edge level increases can pay for both search procedures

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited

e For the analysis, we let each edge pay O(1) credits when its level is
increased

The search on the smaller side is thus paid for by its visited edges
The other search visits the same number of edges (plus/minus 1)
Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
For the analysis, we let each edge pay O(1) credits when its level is
increased

The search on the smaller side is thus paid for by its visited edges
The other search visits the same number of edges (plus/minus 1)
Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)

Amortized time per update is thus O(logn)

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
For the analysis, we let each edge pay O(1) credits when its level is
increased

The search on the smaller side is thus paid for by its visited edges
The other search visits the same number of edges (plus/minus 1)
Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)

Amortized time per update is thus O(logn)

What is the problem with this analysis?

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
For the analysis, we let each edge pay O(1) credits when its level is
increased

The search on the smaller side is thus paid for by its visited edges
The other search visits the same number of edges (plus/minus 1)
Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)

Amortized time per update is thus O(logn)

What is the problem with this analysis?

o The multigraph M, is not stored explicitly

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
For the analysis, we let each edge pay O(1) credits when its level is
increased

The search on the smaller side is thus paid for by its visited edges
The other search visits the same number of edges (plus/minus 1)
Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)

Amortized time per update is thus O(logn)

What is the problem with this analysis?

o The multigraph M; is not stored explicitly
o Thus, we cannot ensure O(1) time per edge visited

15/22 "

Overall Amortized Analysis

e Suppose each search procedure uses O(1) time per edge visited
For the analysis, we let each edge pay O(1) credits when its level is
increased

The search on the smaller side is thus paid for by its visited edges
The other search visits the same number of edges (plus/minus 1)
Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)

Amortized time per update is thus O(logn)

What is the problem with this analysis?

o The multigraph M; is not stored explicitly
o Thus, we cannot ensure O(1) time per edge visited
o We will instead show how to get O(log n) time per edge visited

15/22 "

Overall Amortized Analysis

Suppose each search procedure uses O(1) time per edge visited

For the analysis, we let each edge pay O(1) credits when its level is
increased
The search on the smaller side is thus paid for by its visited edges

The other search visits the same number of edges (plus/minus 1)

Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)
Amortized time per update is thus O(logn)

What is the problem with this analysis?

O

O

©)

The multigraph M, is not stored explicitly
Thus, we cannot ensure O(1) time per edge visited

We will instead show how to get O(log n) time per edge visited

This will give O(log” n) amortized update time

15/22 "

Traversing a single graph edge

Tree in cluster forest C

.

16/22

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children
e At each such node u, store an £y,,x-bit word, edge(u)

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Example with £,.x = 5:

u edge(u) = 10010

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Maintaining these bitmaps can be done efficiently (exercise)

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Maintaining these bitmaps can be done efficiently (exercise)

e Since C is binary, we can traverse a single edge of a multigraph in
O(log n) time using the edge-bit maps (how?)

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Maintaining these bitmaps can be done efficiently (exercise)

e Since C is binary, we can traverse a single edge of a multigraph in
O(log n) time using the edge-bit maps (how?)

Tree in cluster forest C

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Maintaining these bitmaps can be done efficiently (exercise)

e Since C is binary, we can traverse a single edge of a multigraph in
O(log n) time using the edge-bit maps (how?)

e This gives the desired time bound for the search procedures

17/22 "

Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Maintaining these bitmaps can be done efficiently (exercise)

e Since C is binary, we can traverse a single edge of a multigraph in
O(log n) time using the edge-bit maps (how?)

e This gives the desired time bound for the search procedures

e However, we need to deal with the case where C is not binary

17/22 "

Node Ranks

e Recall: for each node u in C, n(u) is the number of leaves in the
subtree of C rooted at u

18/22 "

Node Ranks

e Recall: for each node u in C, n(u) is the number of leaves in the
subtree of C rooted at u
e Define the rank of u as rank(u) = [lgn(u)|

18/22 "

Rank Trees

e Letu be anon-leaf nodeinC

19/22 "

Rank Trees

e Letwu be anon-leaf node in C
e Initialize node set R as the children of w in C

19/22 "

Rank Trees

e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

19/22 "

Rank Trees

e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes 71 and 79 with rank(r;) = rank(rs)

19/22 "

Rank Trees

e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes 71 and ro with rank(r1) = rank(rs)
o Attach r1 and r to a parent r of rank rank(r) = rank(ry) + 1

19/22 "

Rank Trees

e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes 71 and ro with rank(r1) = rank(rs)
o Attach r1 and r to a parent r of rank rank(r) = rank(ry) + 1
o Addrto R

19/22 "

Rank Trees

e Let u be a non-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes r; and ro with rank(r;) = rank(rs)
o Attach r; and o to a parent r of rank rank(r) = rank(r;) + 1

o Addrto R
2 O
I 0
1 1
1 0 0

u

19/22 "

Local trees

e Letry,ro,..., 1 be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry;) > rank(rg) > - - - > rank(ry)

20/22 "

Local trees

o Letry,ro,..., 1L be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry) > rank(re) > --- > rank(rg)

e Localtree L(u) for k = 5:
U

r1
r2

20/22 "

Local trees

e Letry,re,..., 7 be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry) > rank(re) > --- > rank(rg)

e Localtree L(u) for k = 5:
U

r1
r2

s =Tk

e Replace edges from w to its children in C by L(u)

20/22 "

Local trees

e Letry,re,..., 7 be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry) > rank(rg) > --- > rank(ry)

e Localtree L(u) for k = 5:
U

r1
r2

e Replace edges from w to its children in C by L(u)
e Doing this for all v turns C into forest C;, of binary trees

20/22 "

Properties of C;,

e (;, has height O(logn) (exercise)

21/22 "

Properties of C;,

e (;, has height O(logn) (exercise)
e Merging nodes u and v in C involves merging L(u) and L(v) in Cy,

21/22 "

Properties of C;,

e (;, has height O(logn) (exercise)
e Merging nodes u and v in C involves merging L(u) and L(v) in Cy,
e Splitting a node wu involves splitting L ()

21/22 "

Properties of C;,

Cr, has height O(logn) (exercise)

Merging nodes u and v in C involves merging L(u) and L(v) in Cr,
Splitting a node w involves splitting L(u)

This can be done in O(log n) time per merge/split and will not
increase the asymptotic update time (exercise)

21/22 "

Performance of data structure

e Each edge pays O(log n) credits each time its level increases

20 /22"

Performance of data structure

e Each edge pays O(log n) credits each time its level increases
e lts level can never decrease

20 /22"

Performance of data structure

e Each edge pays O(log n) credits each time its level increases
e lts level can never decrease
e Number of levels: O(logn)

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases
lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases
lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases
lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space:

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases
lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases

lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

Can be improved to O(m + n) by compressing paths in Cr,, whose
interior nodes have degree 2, to single edges

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases

lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

Can be improved to O(m + n) by compressing paths in Cr,, whose
interior nodes have degree 2, to single edges

e Using a more complicated data structure, both update and query time
can be improved by a factor of log log n

20 /22"

Performance of data structure

Each edge pays O(log n) credits each time its level increases

lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

Can be improved to O(m + n) by compressing paths in Cr,, whose

interior nodes have degree 2, to single edges

e Using a more complicated data structure, both update and query time
can be improved by a factor of log log n

e This is still the fastest deterministic data structure known

20 /22"

	Problem Definition
	Edge Levels and Clusters
	Clusters
	Cluster forest
	Cluster forest
	Answering Queries
	Handling insert(u,v)
	Handling delete(u,v)
	A vertex of Mi is explored by both search procedures
	A search procedure has no more edges to explore
	Updates to C
	Edge Level Increases after Search
	Maintaining the Invariant
	Overall Amortized Analysis
	Traversing a single graph edge
	Assuming a Binary Cluster Forest C
	Node Ranks
	Rank Trees
	Local trees
	Properties of CL
	Performance of data structure

