
1 / 22

Dynamic Connectivity

Christian Wulff-Nilsen

Algorithmic Techniques for Modern Data Models

DTU

November 28, 2025



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

• Initial graph: |V | = n vertices, E = ∅



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

• Initial graph: |V | = n vertices, E = ∅
• Updates and queries are revealed one by one in an online sequence



Problem Definition

2 / 22

• Obtain an efficient data structure supporting the following operations

in a dynamically changing graph G = (V,E):

◦ insert(u, v): inserts edge (u, v) in E
◦ delete(u, v): deletes edge (u, v) from E
◦ connected(u, v): reports whether vertices u and v are

connected in G

• We refer to insert and delete as update operations and to

connected as a query operation

• Initial graph: |V | = n vertices, E = ∅
• Updates and queries are revealed one by one in an online sequence

• We give a data structure with:

◦ O(log n) worst-case query time

◦ O(log2 n) amortized update time
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• Our data structure will maintain a level ℓ(e) for each e ∈ E where

0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
• For 0 ≤ i ≤ ℓmax, let Gi = (V,Ei) denote the subgraph of G

containing edges e with ℓ(e) ≥ i
• We have E = E0 ⊇ E1 ⊇ E2 ⊇ · · · ⊇ Eℓmax

• Connected components of Gi are called i-clusters or just clusters

• Invariant: any i-cluster contains at most ⌊n/2i⌋ vertices

• 0-clusters are the connected components of G
• ℓmax-clusters are vertices of V (why?)
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• The cluster forest of G is a forest C of rooted trees where each node

u corresponds to a cluster C(u)
• A node u at level i < ℓmax has as children the level (i+ 1)-nodes v

such that C(v) ⊆ C(u)
• Roots of C correspond to connected components of G and leaves of

C correspond to vertices of G
• Each node u of C is associated with its size n(u) which is the

number of leaves in the subtree of C rooted at u
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• Let i = ℓ(u, v) and let Cu and Cv be the (i+ 1)-clusters containing

u and v
• Assume Cu 6= Cv since otherwise, C is not changed

• Let Mi be the multigraph with (i+ 1)-clusters as vertices and level

i-edges of G as edges

• In Mi, execute two standard search procedures in parallel, one

starting in Cu, the other starting in Cv

• Terminate both procedures when in one of the following two cases:

◦ a vertex of Mi is explored by both search procedures

◦ one of the search procedures has no more edges to explore
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• If the two search procedures meet, the level i-cluster C containing

(u, v) is still connected so C remains a level i-cluster

• Otherwise, C is be split in two, one part containing Cu and one

containing Cv

v u

Cv Cu

• If i > 0, recurse on level i− 1
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• Parent level i-cluster C has size at most ⌊n/2i⌋

v u

Cv Cu

C

• The smaller side has size at most ⌊n/2i+1⌋ since otherwise, C
would have size ≥ 2(⌊n/2i+1⌋+ 1) > 2 · n/2i+1 ≥ ⌊n/2i⌋

• Thus, the invariant is still satisfied after merging level (i+ 1)-clusters



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

◦ Thus, we cannot ensure O(1) time per edge visited



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

◦ Thus, we cannot ensure O(1) time per edge visited

◦ We will instead show how to get O(log n) time per edge visited



Overall Amortized Analysis

15 / 22

• Suppose each search procedure uses O(1) time per edge visited

• For the analysis, we let each edge pay O(1) credits when its level is

increased

• The search on the smaller side is thus paid for by its visited edges

• The other search visits the same number of edges (plus/minus 1)

• Hence, the edge level increases can pay for both search procedures

• Max level of an edge: ℓmax = ⌊log n⌋ = O(log n)
• Amortized time per update is thus O(log n)
• What is the problem with this analysis?

◦ The multigraph Mi is not stored explicitly

◦ Thus, we cannot ensure O(1) time per edge visited

◦ We will instead show how to get O(log n) time per edge visited

◦ This will give O(log2 n) amortized update time
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• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Example with ℓmax = 5:

1 14

u edge(u) = 10010
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• Assume C is binary: every node has at most two children

• At each such node u, store an ℓmax-bit word, edge(u)
• The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident

to a leaf of the subtree of C rooted at u
• Maintaining these bitmaps can be done efficiently (exercise)

• Since C is binary, we can traverse a single edge of a multigraph in

O(log n) time using the edge-bit maps (how?)

• This gives the desired time bound for the search procedures

• However, we need to deal with the case where C is not binary
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• Recall: for each node u in C, n(u) is the number of leaves in the

subtree of C rooted at u
• Define the rank of u as rank(u) = ⌊lg n(u)⌋
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• Let u be a non-leaf node in C
• Initialize node set R as the children of u in C
• Rank trees of u are formed by repeating the following procedure as

long as two nodes of R have the same rank:

◦ Remove from R two nodes r1 and r2 with rank(r1) = rank(r2)
◦ Attach r1 and r2 to a parent r of rank rank(r) = rank(r1) + 1
◦ Add r to R
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• Let r1, r2, . . . , rk be the final set of rank tree roots in R ordered by

decreasing rank:

rank(r1) > rank(r2) > · · · > rank(rk)

• Local tree L(u) for k = 5:

u

r5 = rk

r1
r2

r3
r4

• Replace edges from u to its children in C by L(u)
• Doing this for all u turns C into forest CL of binary trees
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• CL has height O(log n) (exercise)

• Merging nodes u and v in C involves merging L(u) and L(v) in CL
• Splitting a node u involves splitting L(u)
• This can be done in O(log n) time per merge/split and will not

increase the asymptotic update time (exercise)
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• Each edge pays O(log n) credits each time its level increases

• Its level can never decrease

• Number of levels: O(log n)
• Amortized time per update: O(log2 n)
• Query time: O(log n)
• Space: O(m+ n log n) words

• Can be improved to O(m+ n) by compressing paths in CL, whose

interior nodes have degree 2, to single edges

• Using a more complicated data structure, both update and query time

can be improved by a factor of log log n
• This is still the fastest deterministic data structure known
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