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Problem Definition

e Obtain an efficient data structure supporting the following operations
in a dynamically changing graph G = (V, E):

o insert(u,v): inserts edge (u,v)in £

o delete(u,v): deletes edge (u,v) from E

o connected(u,v): reports whether vertices v and v are
connected in G

e Wereferto insert and delete as update operations and to
connected as a query operation

e Initial graph: |V'| = n vertices, £ = )

e Updates and queries are revealed one by one in an online sequence

e We give a data structure with:

o O(logn) worst-case query time
o O(log® n) amortized update time
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Edge Levels and Clusters

e Our data structure will maintain a level ¢(e) for each e € F where
0 </{(e) < lmax = |logn]

o For0 < i < /lhax, let G; = (V, E;) denote the subgraph of G

containing edges e with £(e) > i

WehaveE:Eo :_>E1 :_>E2 DRI :_)Egmax

Connected components of (G; are called i-clusters or just clusters

Invariant: any i-cluster contains at most |n/2"| vertices

O-clusters are the connected components of &G

¢ max-clusters are vertices of V' (why?)
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Cluster forest
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Cluster forest

e The cluster forest of (5 is a forest C of rooted trees where each node
u corresponds to a cluster C'(u)

e Anode u atlevel i < £,,x has as children the level (i + 1)-nodes v
such that C'(v) C C'(u)

e Roots of C correspond to connected components of G and leaves of
C correspond to vertices of GG

e Each node u of C is associated with its size n(u) which is the
number of leaves in the subtree of C rooted at u
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Tu, Ty: roots of trees of C containing u and v, respectively
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This corresponds to merging C'(r,) and C'(r)
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Handling delete(u, v)

o leti=/{(u,v)andlet Cy, and C, be the (i + 1)-clusters containing
u and v

e Assume C, #* (), since otherwise, C is not changed

e Let M; be the multigraph with (¢ 4+ 1)-clusters as vertices and level
1-edges of G as edges

e In M;, execute two standard search procedures in parallel, one
starting in C,,, the other starting in C,

e Terminate both procedures when in one of the following two cases:

o a vertex of M; is explored by both search procedures
o one of the search procedures has no more edges to explore
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Updates to C

e If the two search procedures meet, the level ¢-cluster C' containing
(u, v) is still connected so C' remains a level i-cluster

e Otherwise, C' is be split in two, one part containing C,, and one
containing C),

e Ifz > 0, recurseonlevel? — 1
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Maintaining the Invariant

o Parent level i-cluster C has size at most |n/2! |

e The smaller side has size at most |n/2"™!| since otherwise, C
would have size > 2(|n /27| +1) > 2-n/2°7t > |n/2¢

e Thus, the invariant is still satisfied after merging level (i + 1)-clusters
|
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increased
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The other search visits the same number of edges (plus/minus 1)

Hence, the edge level increases can pay for both search procedures
Max level of an edge: max = |logn| = O(logn)
Amortized time per update is thus O(logn)

What is the problem with this analysis?

O

O

©)

The multigraph M, is not stored explicitly
Thus, we cannot ensure O(1) time per edge visited

We will instead show how to get O(log n) time per edge visited

This will give O(log” n) amortized update time
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Traversing a single graph edge

Tree in cluster forest C

.
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Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children
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Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Example with £,.x = 5:

u  edge(u) = 10010
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Assuming a Binary Cluster Forest C

e Assume C is binary: every node has at most two children

e At each such node u, store an £y,,x-bit word, edge(u)

e The ith bit edge(u)|i] is 1 if and only if a level i-edge of E is incident
to a leaf of the subtree of C rooted at u

e Maintaining these bitmaps can be done efficiently (exercise)

e Since C is binary, we can traverse a single edge of a multigraph in
O(log n) time using the edge-bit maps (how?)

e This gives the desired time bound for the search procedures

e However, we need to deal with the case where C is not binary
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Node Ranks

e Recall: for each node u in C, n(u) is the number of leaves in the
subtree of C rooted at u
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Node Ranks

e Recall: for each node u in C, n(u) is the number of leaves in the
subtree of C rooted at u
e Define the rank of u as rank(u) = [lgn(u)|
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Rank Trees

e Letu be anon-leaf nodeinC
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e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes 71 and 79 with rank(r;) = rank(rs)
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Rank Trees

e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes 71 and ro with rank(r1) = rank(rs)
o Attach r1 and r to a parent r of rank rank(r) = rank(ry) + 1
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Rank Trees

e Letu be anon-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes 71 and ro with rank(r1) = rank(rs)
o Attach r1 and r to a parent r of rank rank(r) = rank(ry) + 1
o Addrto R
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Rank Trees

e Let u be a non-leaf node in C

e |Initialize node set R as the children of u in C

e Rank trees of u are formed by repeating the following procedure as
long as two nodes of R have the same rank:

o Remove from R two nodes r; and ro with rank(r;) = rank(rs)
o Attach r; and o to a parent r of rank rank(r) = rank(r;) + 1

o Addrto R
2 O
I 0
1 1
1 0 0

u
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Local trees

e Letry,ro,..., 1 be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry;) > rank(rg) > - - - > rank(ry)
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Local trees

o Letry,ro,..., 1L be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry) > rank(re) > --- > rank(rg)

e Localtree L(u) for k = 5:
U

r1
r2
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Local trees

e Letry,re,..., 7 be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry) > rank(re) > --- > rank(rg)

e Localtree L(u) for k = 5:
U

r1
r2

s =Tk

e Replace edges from w to its children in C by L(u)
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Local trees

e Letry,re,..., 7 be the final set of rank tree roots in R ordered by
decreasing rank:

rank(ry) > rank(rg) > --- > rank(ry)

e Localtree L(u) for k = 5:
U

r1
r2

e Replace edges from w to its children in C by L(u)
e Doing this for all v turns C into forest C;, of binary trees
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Properties of C;,

e (;, has height O(logn) (exercise)
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e Splitting a node wu involves splitting L ()
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Properties of C;,

Cr, has height O(logn) (exercise)

Merging nodes u and v in C involves merging L(u) and L(v) in Cr,
Splitting a node w involves splitting L(u)

This can be done in O(log n) time per merge/split and will not
increase the asymptotic update time (exercise)
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Performance of data structure

e Each edge pays O(log n) credits each time its level increases
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e Each edge pays O(log n) credits each time its level increases
e lts level can never decrease
e Number of levels: O(logn)
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Performance of data structure

Each edge pays O(log n) credits each time its level increases
lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)
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Performance of data structure

Each edge pays O(log n) credits each time its level increases
lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words
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Performance of data structure

Each edge pays O(log n) credits each time its level increases

lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

Can be improved to O(m + n) by compressing paths in Cr,, whose
interior nodes have degree 2, to single edges
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Performance of data structure

Each edge pays O(log n) credits each time its level increases

lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

Can be improved to O(m + n) by compressing paths in Cr,, whose
interior nodes have degree 2, to single edges

e Using a more complicated data structure, both update and query time
can be improved by a factor of log log n
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Performance of data structure

Each edge pays O(log n) credits each time its level increases

lts level can never decrease

Number of levels: O(logn)

Amortized time per update: O(log” n)

Query time: O(logn)

Space: O(m + nlogn) words

Can be improved to O(m + n) by compressing paths in Cr,, whose

interior nodes have degree 2, to single edges

e Using a more complicated data structure, both update and query time
can be improved by a factor of log log n

e This is still the fastest deterministic data structure known
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