Dynamic Connectivity

Christian Wulff-Nilsen
Algorithmic Techniques for Modern Data Models
DTU

November 28, 2025

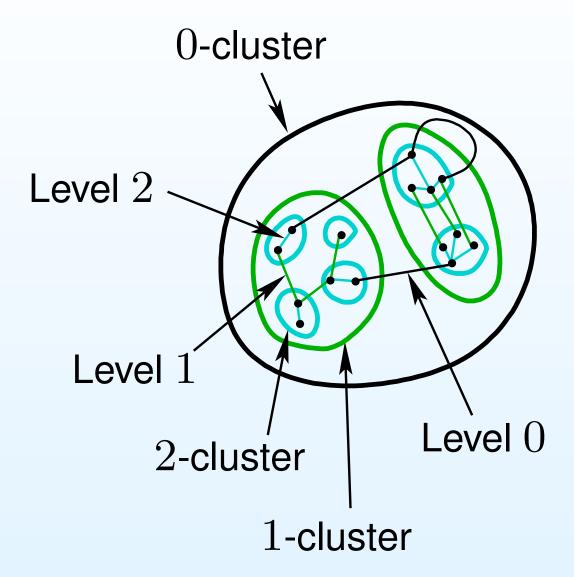
Problem Definition

- Obtain an efficient data structure supporting the following operations in a dynamically changing graph G=(V,E):
 - \circ insert(u,v): inserts edge (u,v) in E
 - \circ delete(u,v): deletes edge (u,v) from E
 - \circ connected (u,v): reports whether vertices u and v are connected in G
- We refer to insert and delete as update operations and to connected as a query operation
- Initial graph: |V| = n vertices, $E = \emptyset$
- Updates and queries are revealed one by one in an online sequence
- We give a data structure with:
 - $\circ O(\log n)$ worst-case query time
 - $\circ O(\log^2 n)$ amortized update time

Edge Levels and Clusters

- Our data structure will maintain a *level* $\ell(e)$ for each $e \in E$ where $0 \le \ell(e) \le \ell_{\max} = \lfloor \log n \rfloor$
- For $0 \le i \le \ell_{\max}$, let $G_i = (V, E_i)$ denote the subgraph of G containing edges e with $\ell(e) \ge i$
- We have $E=E_0\supseteq E_1\supseteq E_2\supseteq \cdots \supseteq E_{\ell_{\max}}$
- Connected components of G_i are called *i-clusters* or just *clusters*
- Invariant: any i-cluster contains at most $\lfloor n/2^i \rfloor$ vertices
- ullet 0-clusters are the connected components of G
- ℓ_{\max} -clusters are vertices of V (why?)

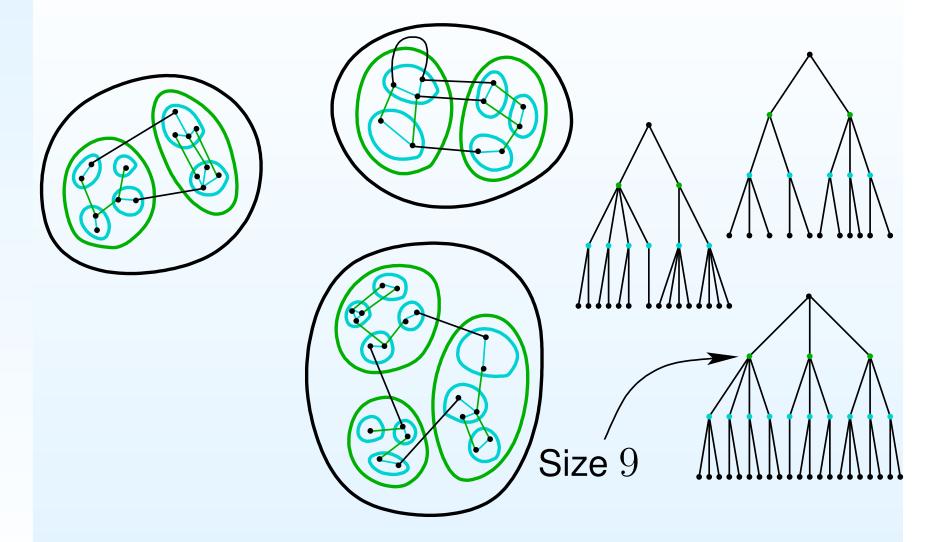
Clusters



Cluster forest

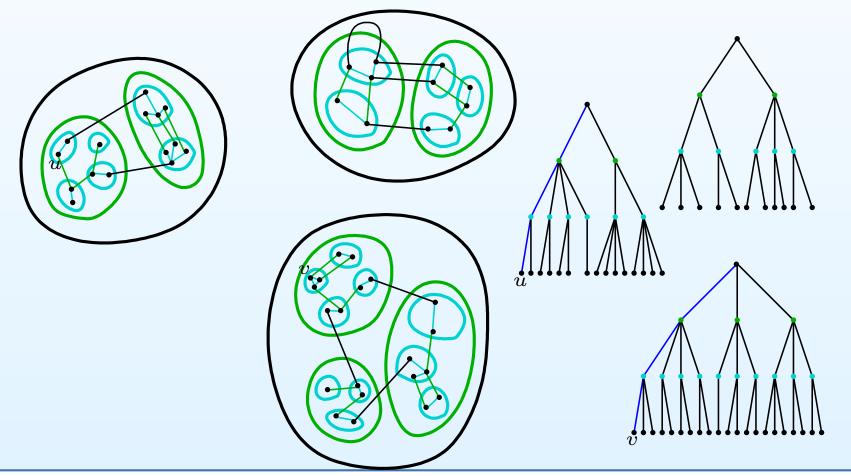
- The *cluster forest* of G is a forest $\mathcal C$ of rooted trees where each node u corresponds to a cluster C(u)
- A node u at level $i<\ell_{\max}$ has as children the level (i+1)-nodes v such that $C(v)\subseteq C(u)$
- Roots of $\mathcal C$ correspond to connected components of G and leaves of $\mathcal C$ correspond to vertices of G
- Each node u of $\mathcal C$ is associated with its size n(u) which is the number of leaves in the subtree of $\mathcal C$ rooted at u

Cluster forest

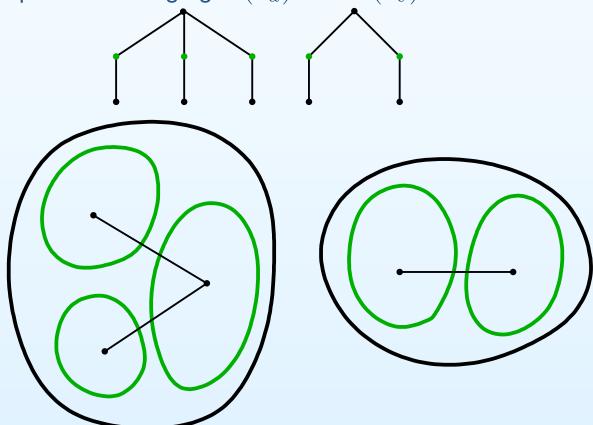


Answering Queries

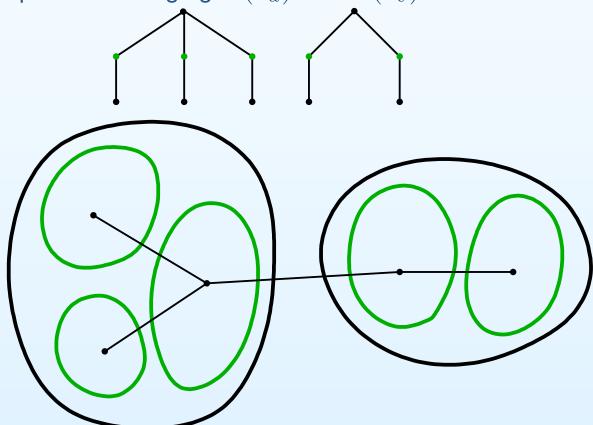
- To determine if vertices u and v are connected in G, traverse the leaf-to-root paths from u and v in $\mathcal C$
- $\bullet \quad \text{Then u and v are connected in G iff the roots are the same} \\$
- Query time $O(\log n)$



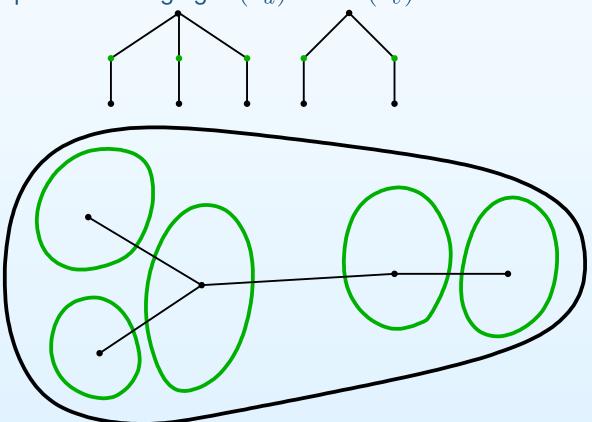
- Initialize $\ell(u,v) \leftarrow 0$
- r_u , r_v : roots of trees of C containing u and v, respectively
- If $r_u = r_v$, $\mathcal C$ is not changed
- Otherwise, r_u and r_v are merged
- This corresponds to merging $C(r_u)$ and $C(r_v)$



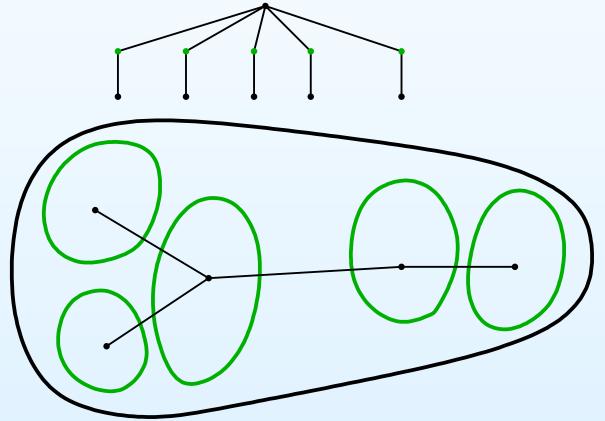
- Initialize $\ell(u,v) \leftarrow 0$
- r_u , r_v : roots of trees of C containing u and v, respectively
- If $r_u = r_v$, $\mathcal C$ is not changed
- Otherwise, r_u and r_v are merged
- This corresponds to merging $C(r_u)$ and $C(r_v)$



- Initialize $\ell(u,v) \leftarrow 0$
- r_u , r_v : roots of trees of C containing u and v, respectively
- If $r_u = r_v$, $\mathcal C$ is not changed
- Otherwise, r_u and r_v are merged
- This corresponds to merging $C(r_u)$ and $C(r_v)$

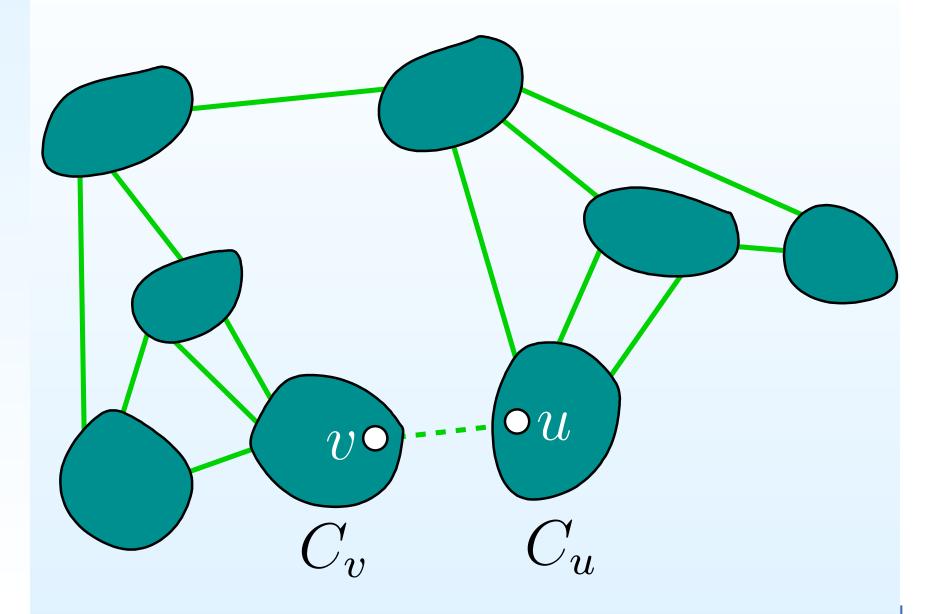


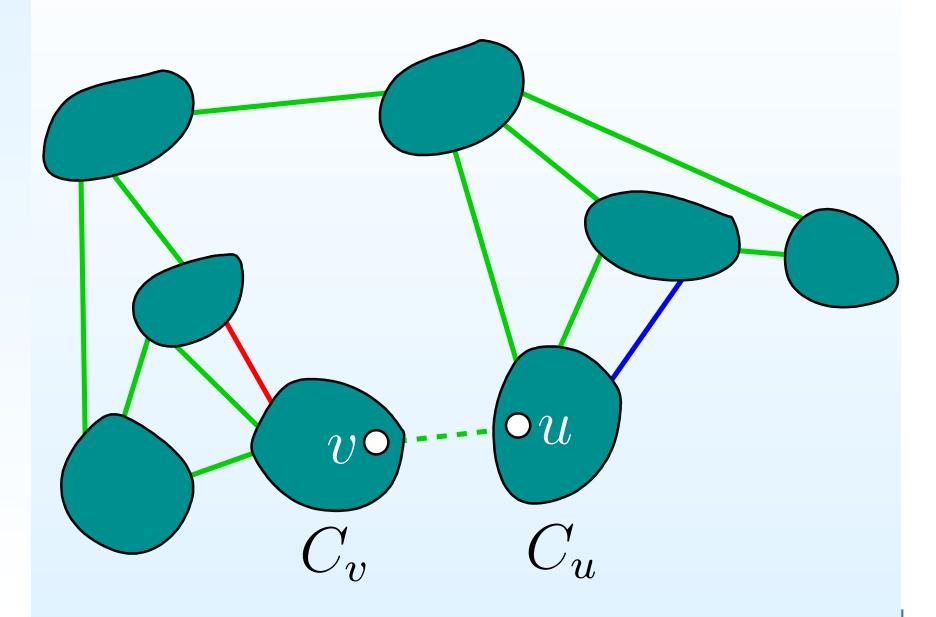
- Initialize $\ell(u,v) \leftarrow 0$
- r_u , r_v : roots of trees of $\mathcal C$ containing u and v, respectively
- If $r_u = r_v$, $\mathcal C$ is not changed
- Otherwise, r_u and r_v are merged
- ullet This corresponds to merging $C(r_u)$ and $C(r_v)$

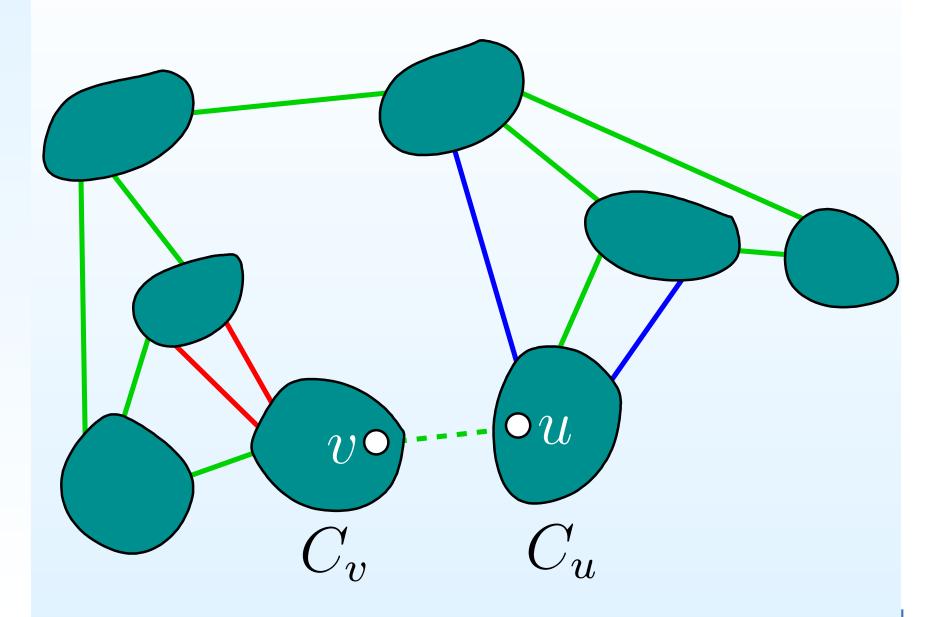


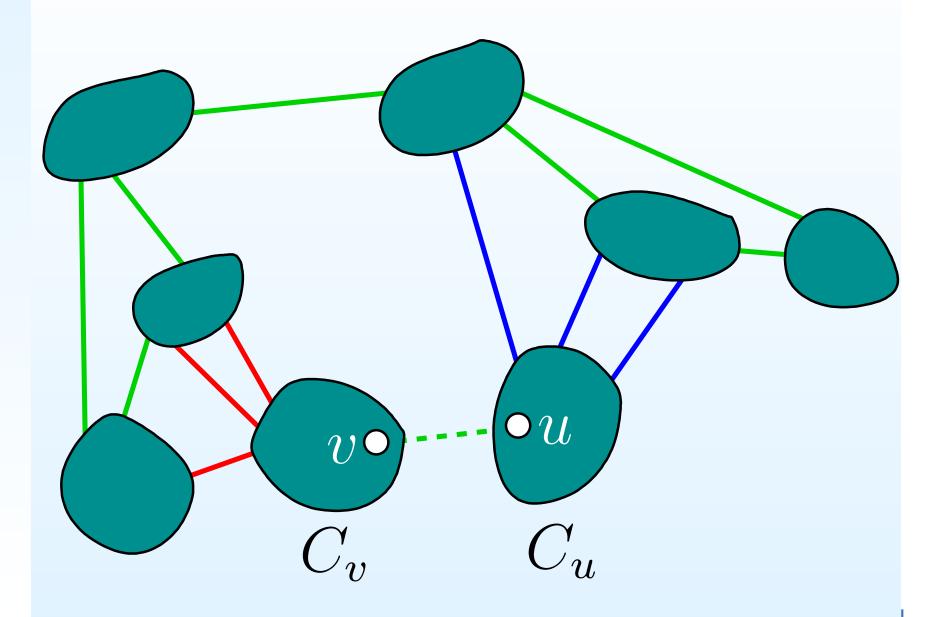
Handling delete(u, v)

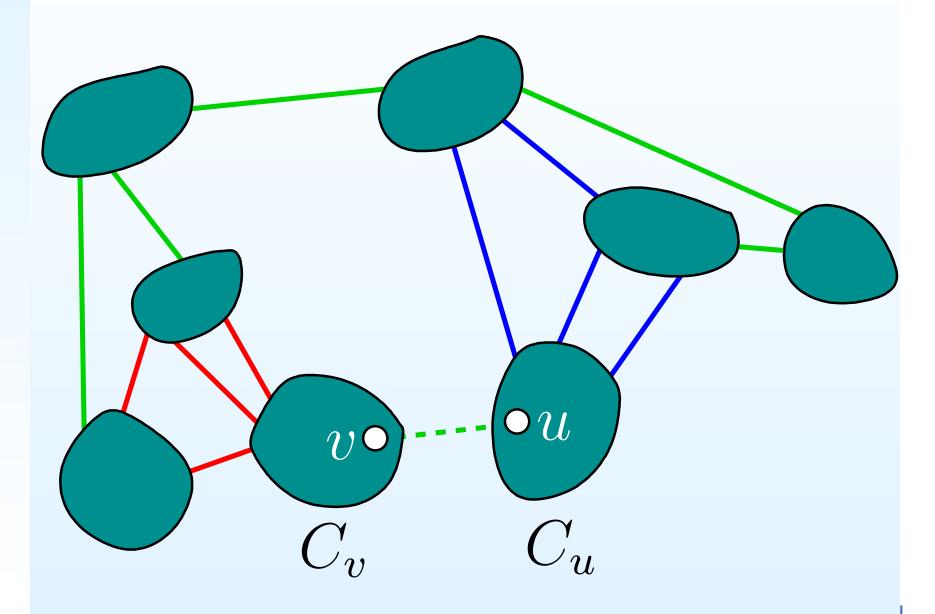
- Let $i=\ell(u,v)$ and let C_u and C_v be the (i+1)-clusters containing u and v
- Assume $C_u \neq C_v$ since otherwise, \mathcal{C} is not changed
- Let M_i be the multigraph with (i+1)-clusters as vertices and level i-edges of G as edges
- In M_i , execute two standard search procedures in parallel, one starting in C_u , the other starting in C_v
- Terminate both procedures when in one of the following two cases:
 - \circ a vertex of M_i is explored by both search procedures
 - one of the search procedures has no more edges to explore

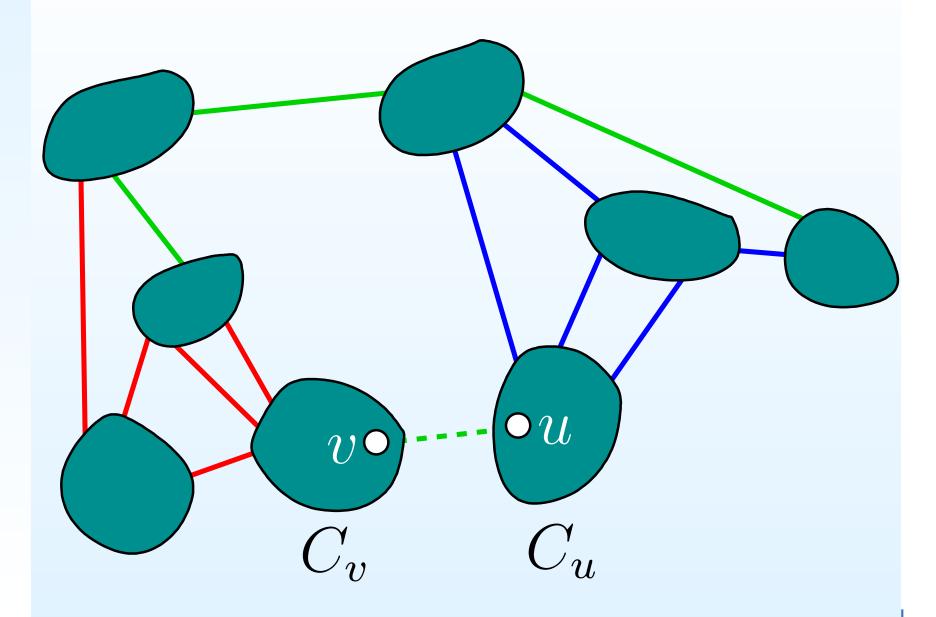


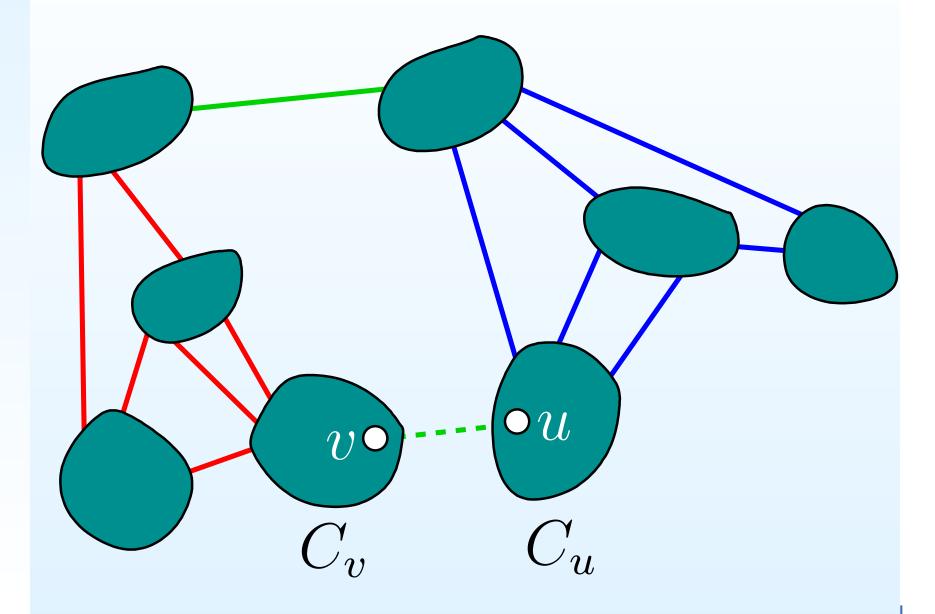


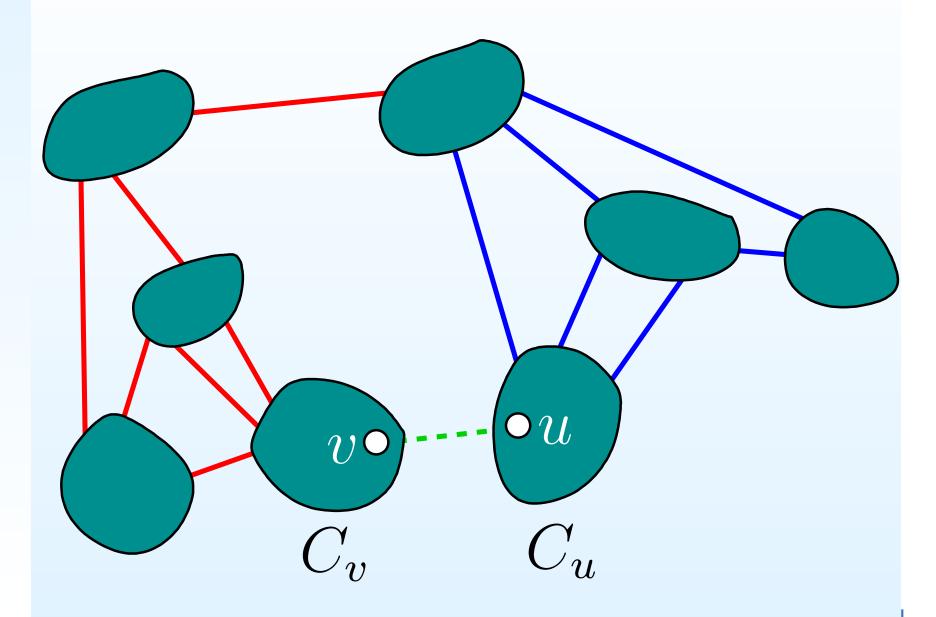


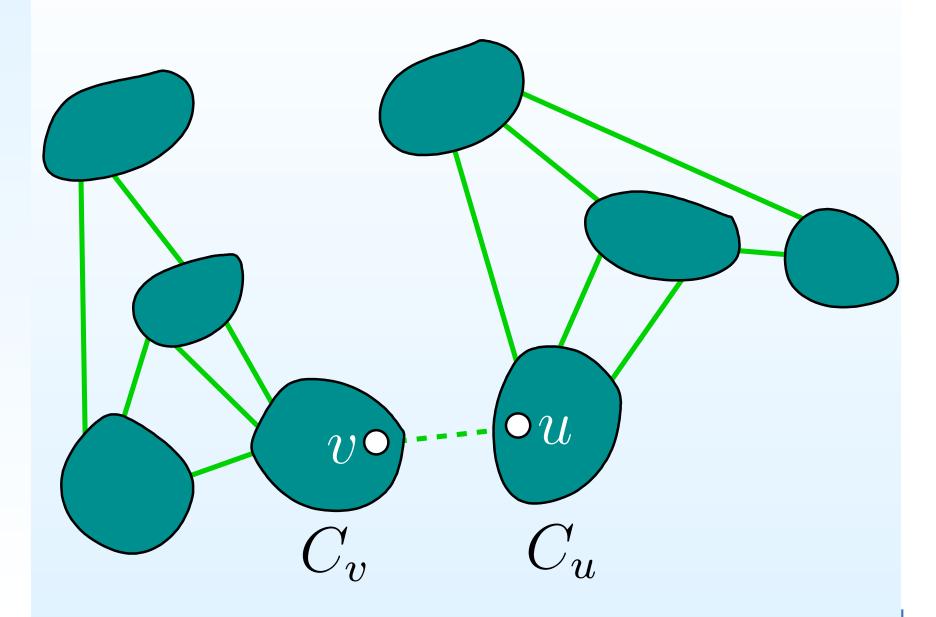


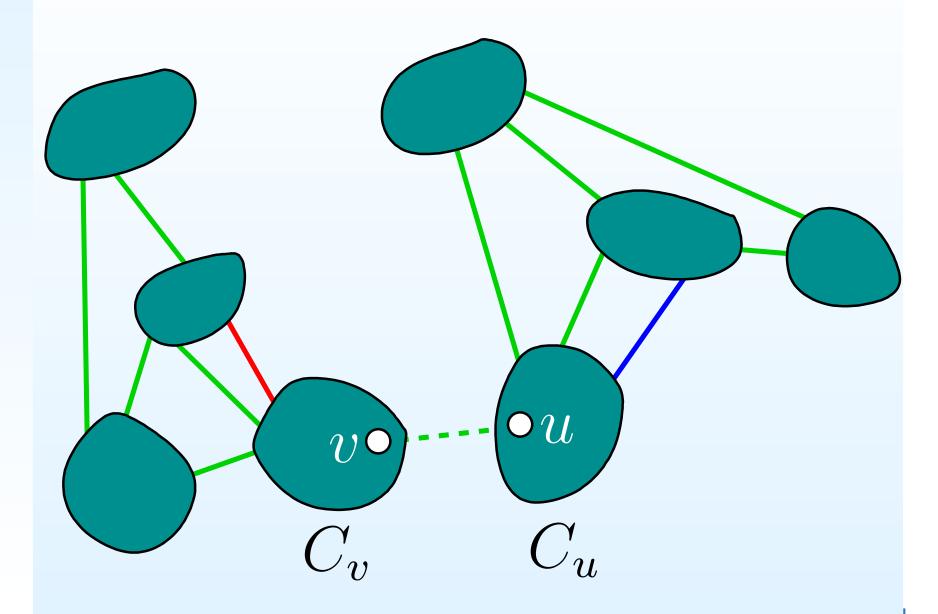


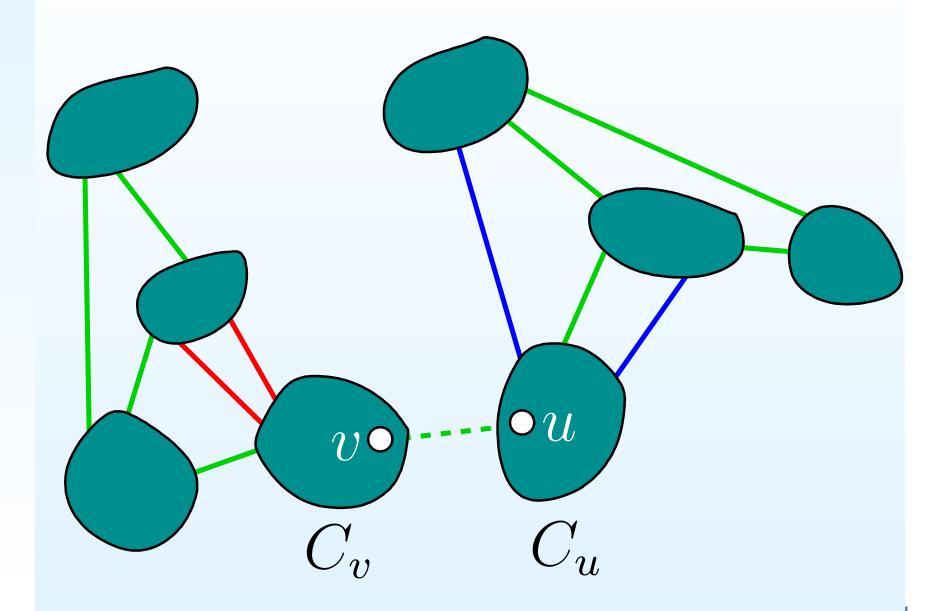


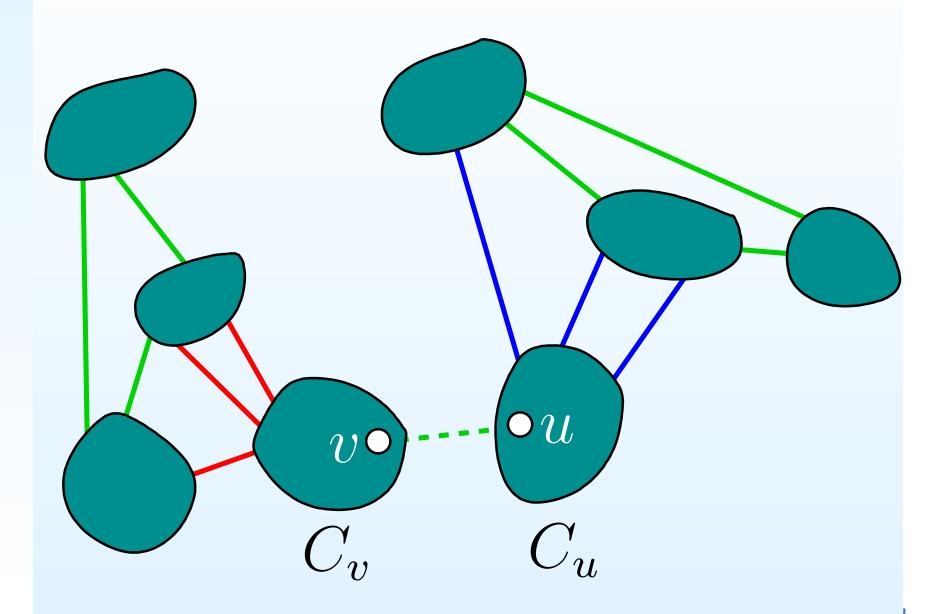


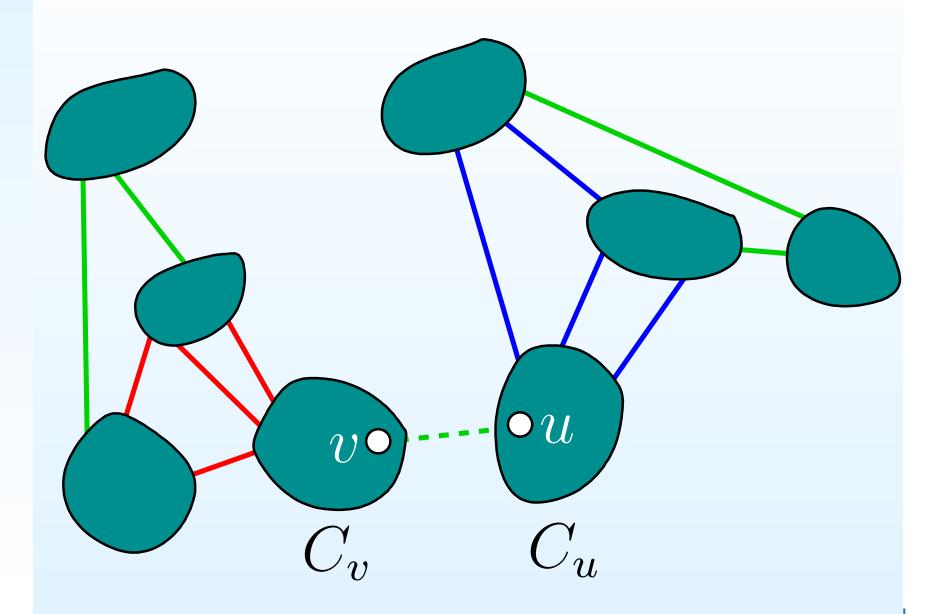


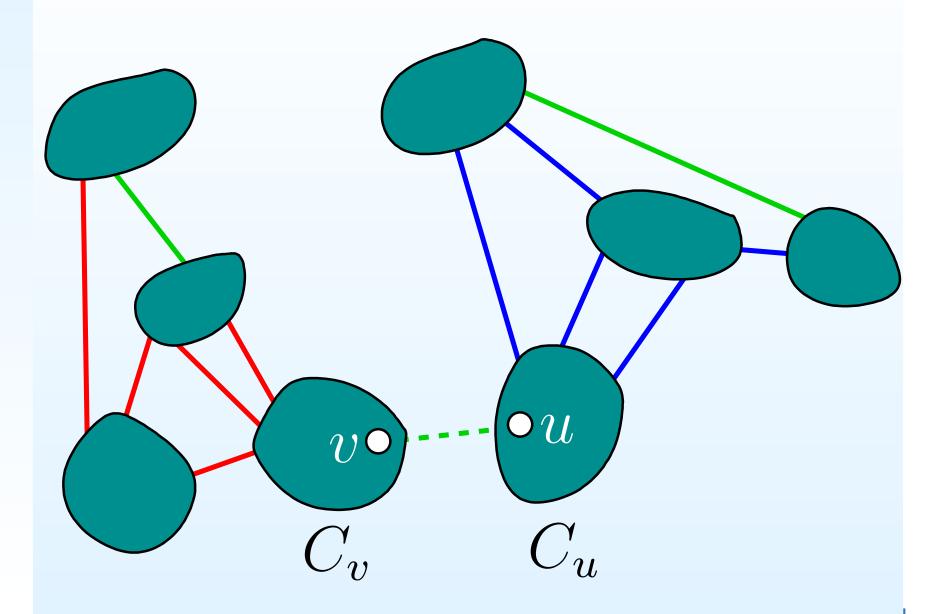


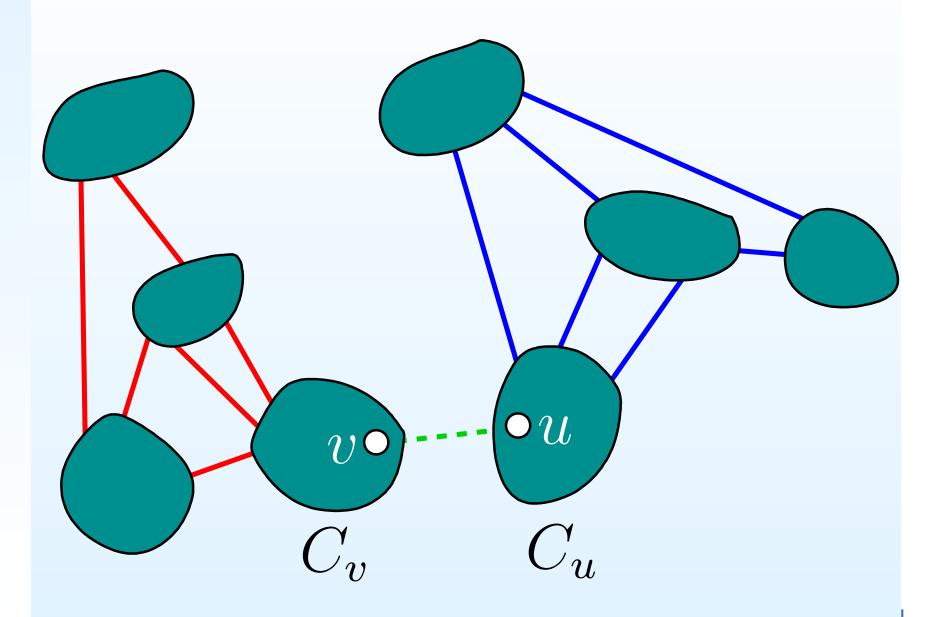






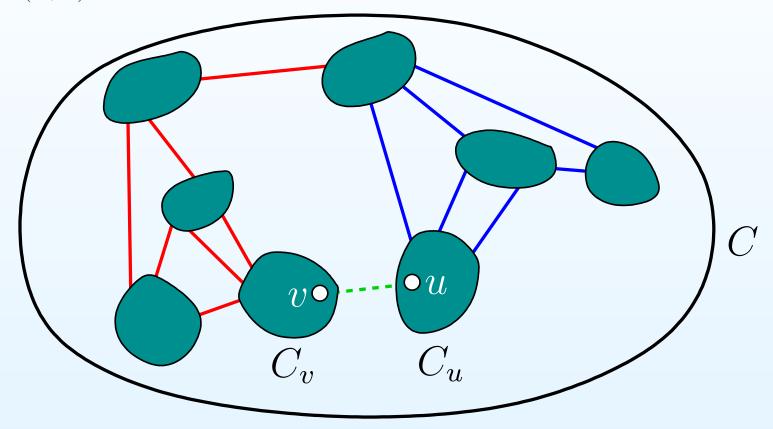






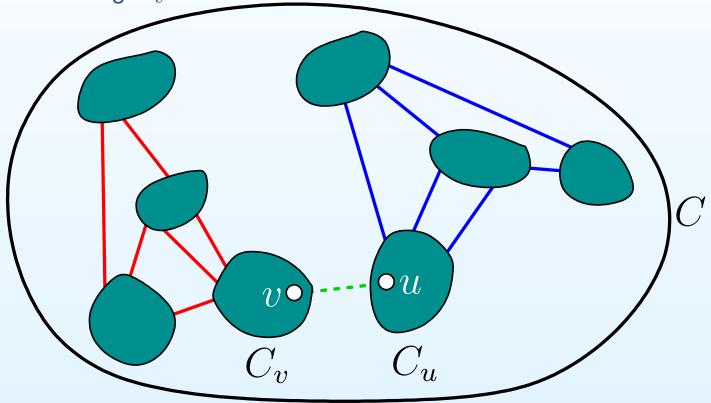
Updates to ${\mathcal C}$

• If the two search procedures meet, the level i-cluster C containing (u,v) is still connected so C remains a level i-cluster



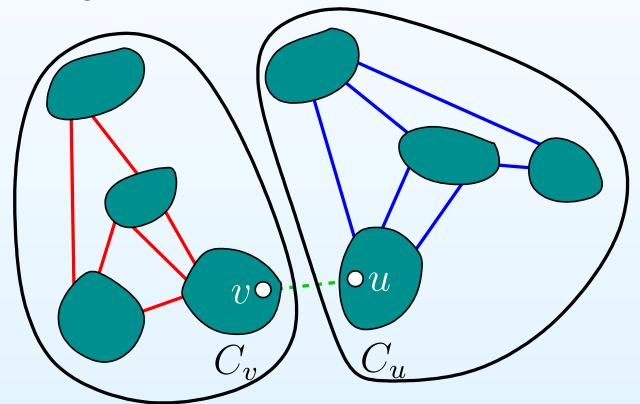
Updates to ${\mathcal C}$

- If the two search procedures meet, the level i-cluster C containing (u,v) is still connected so C remains a level i-cluster
- Otherwise, C is be split in two, one part containing C_u and one containing C_v



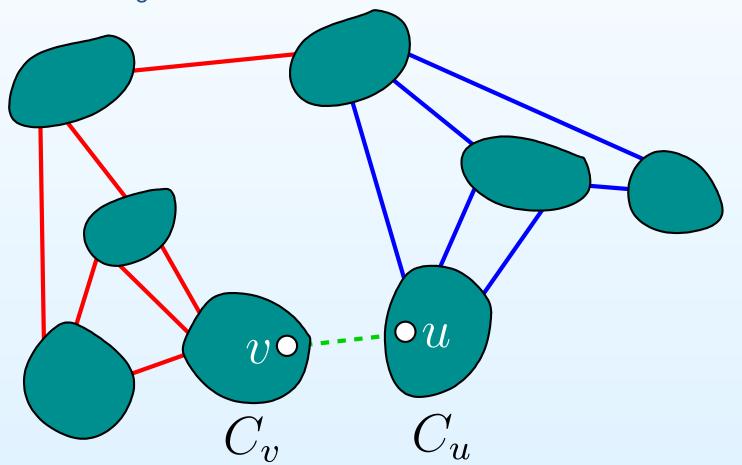
Updates to ${\mathcal C}$

- If the two search procedures meet, the level i-cluster C containing (u,v) is still connected so C remains a level i-cluster
- Otherwise, C is be split in two, one part containing C_u and one containing C_v

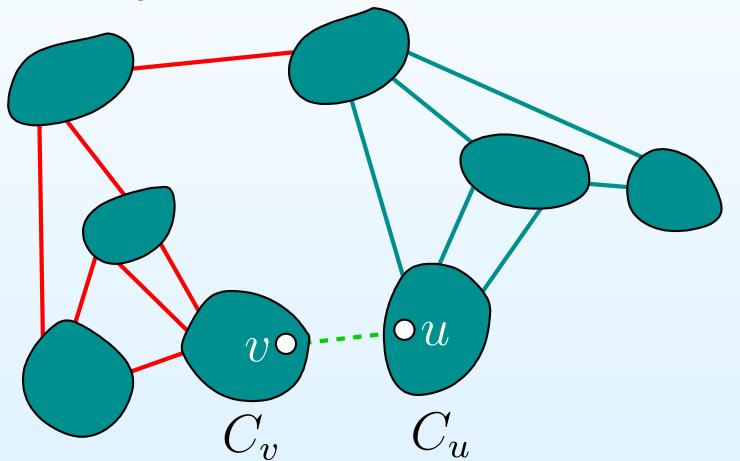


• If i > 0, recurse on level i - 1

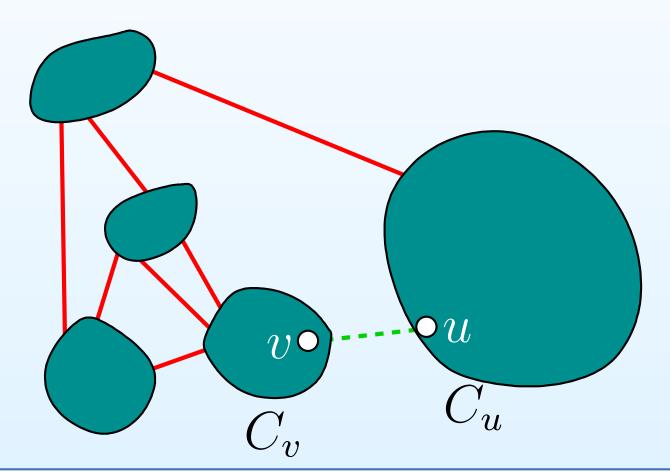
- Recall: each node w of $\mathcal C$ is associated with its size n(w)
- n(w) is the number of vertices of V in cluster C(w)
- For the search procedure that explored clusters of smallest total size,
 all its visited edges have their levels increased



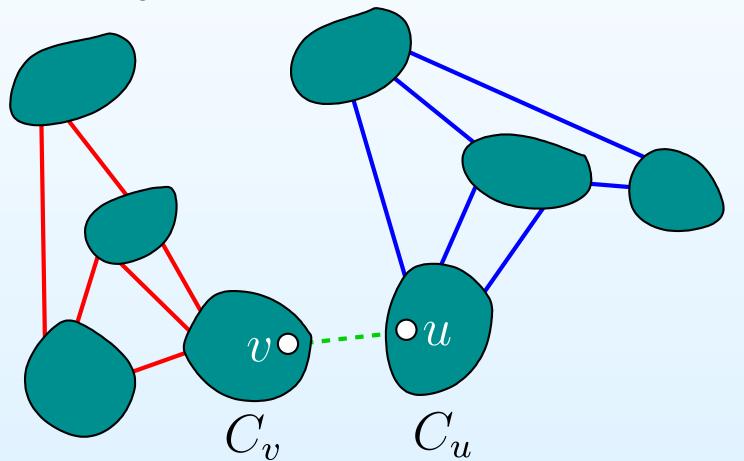
- Recall: each node w of $\mathcal C$ is associated with its size n(w)
- ullet n(w) is the number of vertices of V in cluster C(w)
- For the search procedure that explored clusters of smallest total size,
 all its visited edges have their levels increased



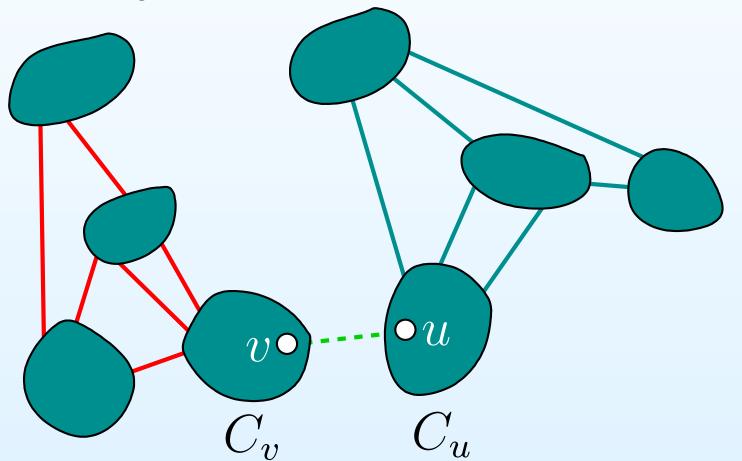
- Recall: each node w of $\mathcal C$ is associated with its size n(w)
- n(w) is the number of vertices of V in cluster C(w)
- For the search procedure that explored clusters of smallest total size,
 all its visited edges have their levels increased



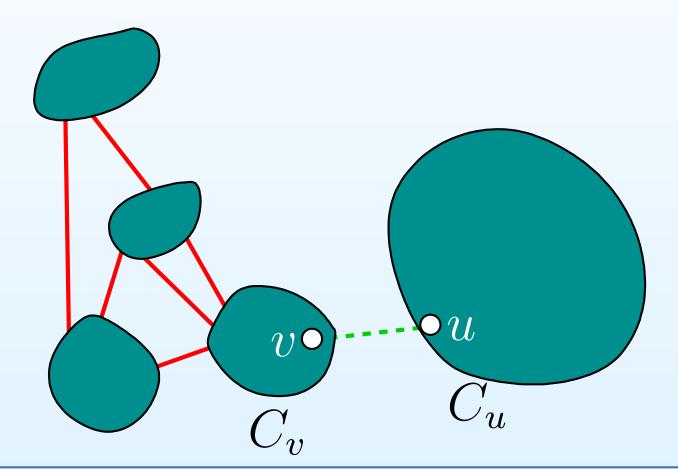
- Recall: each node w of $\mathcal C$ is associated with its size n(w)
- n(w) is the number of vertices of V in cluster C(w)
- For the search procedure that explored clusters of smallest total size,
 all its visited edges have their levels increased



- Recall: each node w of $\mathcal C$ is associated with its size n(w)
- ullet n(w) is the number of vertices of V in cluster C(w)
- For the search procedure that explored clusters of smallest total size,
 all its visited edges have their levels increased

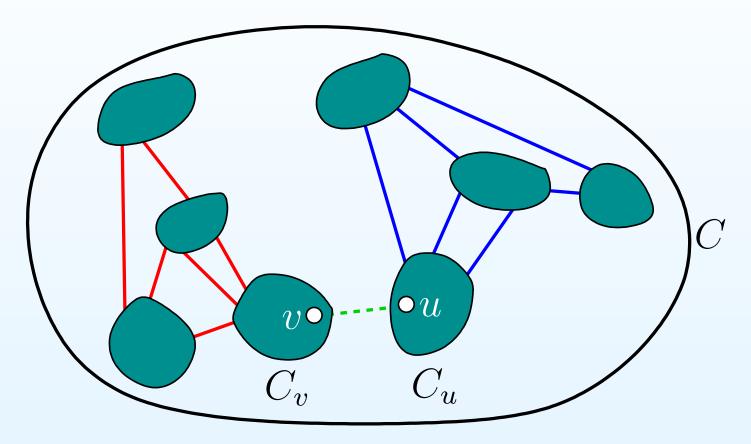


- Recall: each node w of $\mathcal C$ is associated with its size n(w)
- n(w) is the number of vertices of V in cluster C(w)
- For the search procedure that explored clusters of smallest total size, all its visited edges have their levels increased



Maintaining the Invariant

• Parent level i-cluster C has size at most $\lfloor n/2^i \rfloor$



- The smaller side has size at most $\lfloor n/2^{i+1} \rfloor$ since otherwise, C would have size $\geq 2(\lfloor n/2^{i+1} \rfloor + 1) > 2 \cdot n/2^{i+1} \geq \lfloor n/2^i \rfloor$
- Thus, the invariant is still satisfied after merging level (i+1)-clusters

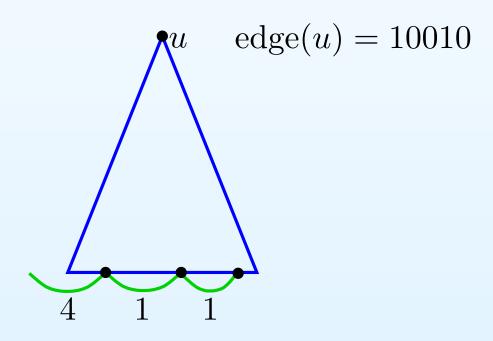
Overall Amortized Analysis

- Suppose each search procedure uses O(1) time per edge visited
- ullet For the analysis, we let each edge pay O(1) credits when its level is increased
- The search on the smaller side is thus paid for by its visited edges
- The other search visits the same number of edges (plus/minus 1)
- Hence, the edge level increases can pay for both search procedures
- Max level of an edge: $\ell_{\max} = \lfloor \log n \rfloor = O(\log n)$
- Amortized time per update is thus $O(\log n)$
- What is the problem with this analysis?
 - \circ The multigraph M_i is not stored explicitly
 - \circ Thus, we cannot ensure O(1) time per edge visited
 - \circ We will instead show how to get $O(\log n)$ time per edge visited
 - \circ This will give $O(\log^2 n)$ amortized update time

Traversing a single graph edge Tree in cluster forest ${\cal C}$

Assuming a Binary Cluster Forest ${\mathcal C}$

- ullet Assume ${\mathcal C}$ is binary: every node has at most two children
- At each such node u, store an ℓ_{\max} -bit word, $\mathrm{edge}(u)$
- The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident to a leaf of the subtree of $\mathcal C$ rooted at u
- Example with $\ell_{\rm max}=5$:



Assuming a Binary Cluster Forest ${\mathcal C}$

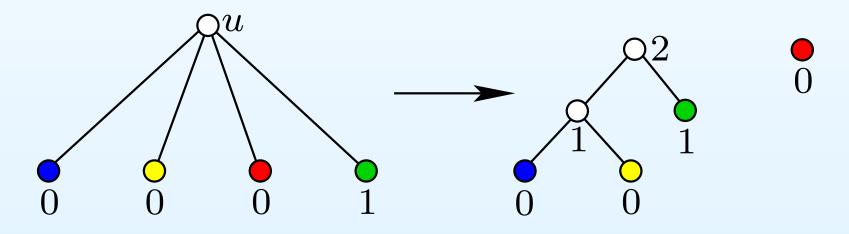
- ullet Assume ${\mathcal C}$ is binary: every node has at most two children
- At each such node u, store an ℓ_{\max} -bit word, $\mathrm{edge}(u)$
- The ith bit edge(u)[i] is 1 if and only if a level i-edge of E is incident to a leaf of the subtree of C rooted at u
- Maintaining these bitmaps can be done efficiently (exercise)
- Since C is binary, we can traverse a single edge of a multigraph in $O(\log n)$ time using the edge-bit maps (how?)
- This gives the desired time bound for the search procedures
- ullet However, we need to deal with the case where ${\mathcal C}$ is not binary

Node Ranks

- Recall: for each node u in \mathcal{C} , n(u) is the number of leaves in the subtree of \mathcal{C} rooted at u
- Define the *rank* of u as $rank(u) = \lfloor \lg n(u) \rfloor$

Rank Trees

- Let u be a non-leaf node in \mathcal{C}
- Initialize node set R as the children of u in $\mathcal C$
- Rank trees of u are formed by repeating the following procedure as long as two nodes of R have the same rank:
 - Remove from R two nodes r_1 and r_2 with $\mathrm{rank}(r_1) = \mathrm{rank}(r_2)$
 - Attach r_1 and r_2 to a parent r of rank $\mathrm{rank}(r) = \mathrm{rank}(r_1) + 1$
 - \circ Add r to R

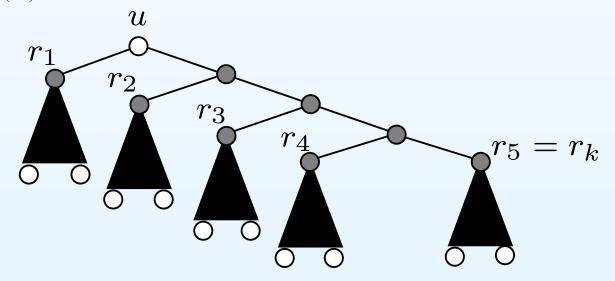


Local trees

• Let r_1, r_2, \ldots, r_k be the final set of rank tree roots in R ordered by decreasing rank:

$$\operatorname{rank}(r_1) > \operatorname{rank}(r_2) > \cdots > \operatorname{rank}(r_k)$$

• Local tree L(u) for k=5:



- Replace edges from u to its children in $\mathcal C$ by L(u)
- Doing this for all u turns $\mathcal C$ into forest $\mathcal C_L$ of binary trees

Properties of \mathcal{C}_L

- \mathcal{C}_L has height $O(\log n)$ (exercise)
- Merging nodes u and v in $\mathcal C$ involves merging L(u) and L(v) in $\mathcal C_L$
- Splitting a node u involves splitting L(u)
- This can be done in $O(\log n)$ time per merge/split and will not increase the asymptotic update time (exercise)

Performance of data structure

- Each edge pays $O(\log n)$ credits each time its level increases
- Its level can never decrease
- Number of levels: $O(\log n)$
- Amortized time per update: $O(\log^2 n)$
- Query time: $O(\log n)$
- Space: $O(m + n \log n)$ words
- Can be improved to O(m+n) by compressing paths in \mathcal{C}_L , whose interior nodes have degree 2, to single edges
- Using a more complicated data structure, both update and query time can be improved by a factor of $\log \log n$
- This is still the fastest deterministic data structure known