Weekplan: Streaming II.

Philip Bille Inge Li Gørtz Christian Wulff-Nilsen

References and Reading

[1] Amit Chakrabarti: Data Stream Algorithms 2011 (updated July 2020) Chapters 2.0–2.3 and 4.0–4.3.

Hash function cheat-sheet

The notation [x] Throughout this sheet we let $[x] = \{1, 2, ..., x\}$.

Definition: Hash function A hash function $h: U \to [n]$ is a random variable in the class of all functions $U \to [n]$.

Definition: 2-universal Also known as strongly universal or pairwise independent.

A hash function $h: U \to [n]$ is 2-universal if for all $x \neq y \in U$ and $q, r \in [n]$

$$P[h(x) = q \land h(y) = r] = \frac{1}{n^2}.$$

Equivalently, the following two conditions hold:

- for any $x \in U$, h(x) is uniform in [n],
- for any $x \neq y \in U$, h(x) and h(y) are independent.

Exercises

- **1** Hash functions Suppose h is a 2-universal hash function from [n] to $[n^3]$. Show that h is injective with probability at least $1 \frac{1}{n}$.
- **2** The Tidemark algorithm. The purpose of the following exercises is to walk you through part of the proof in Section 2.3 of [1]. The slides contain all solutions (and will be covered in the lecture) so try to avoid looking at them when solving the exercises.
 - **2.1** Describe the indicator variables $X_{r,j}$ and Y_r in your own words.
 - **2.2** Calculate $E[X_{r,j}]$ and $E[Y_r]$. You may use the fact that h is uniform. Does $E[X_{r,j}]$ depend on j, on r, or both?
 - **2.3** Show that $P[Y_r \ge 1] \le \frac{d}{2r}$.
 - **2.4** Show that for any random variable X, $Var[X] \le E[X^2]$.
 - **2.5** Show that $Var[Y_r] \leq \frac{d}{2^r}$. You may use linearity of variance (this is applicable since the $X_{r,j}$ -variables are 2-independent).
 - **2.6** Use Chebyshev to show that $P[Y_r = 0] \le \frac{2^r}{d}$.

3 Counting rare elements¹ Paul goes fishing. There are u different fish species $U = \{1, ..., u\}$. Paul catches one fish at a time. Let a_t be the fish species he catches at time t. Let $c_t[j] = |\{a_i | a_i = j, i \le t\}|$ be the number of times he catches a fish of species j up to time t. Species j is rare at time t if it appears precisely once in his catch up to time t. The rarity $\rho[t]$ of his catch at time t is defined as:

$$\rho(t) = \frac{\text{\#rare species}}{u} .$$

- **3.1** Explain how Paul can calculate $\rho(t)$ precisely, using $2u + \log m$ bits of space.
- **3.2** However, Paul wants to store only as many bits as will fit his tiny suitcase, i.e., o(u), preferably O(1) bits. Therefore, Paul picks k random fish species each independently, randomly with probability 1/u at the beginning and maintains the number of times each of these fish species appear in his bounty, as he catches fish one after another. Paul outputs the estimate

$$\hat{\rho}(t) = \frac{\text{\#rare species in the sample}}{k} .$$

Let $c_1(t), \ldots, c_k(t)$ be the value of the counters at time t. Show that $P[\hat{\rho}(t) \ge 3\rho] \le 1/3$. *Hint*: Calculate first $P[c_i(t) = 1]$.

- 4 Approximate Counting Solve exercise 4-1 from [1].
- **5** 2-universal Hash Families Solve exercise 2-1 from [1].

¹This exercise is from Muthukrishnan "Data Streams: Algorithms and Applications