Graph Streaming

Christian Wulff-Nilsen
Algorithmic Techniques for Modern Data Models
DTU

November 14, 2025

Overview for today

- Graph streaming model
- Graph connectivity
- Bipartiteness testing
- Distance estimation and spanners

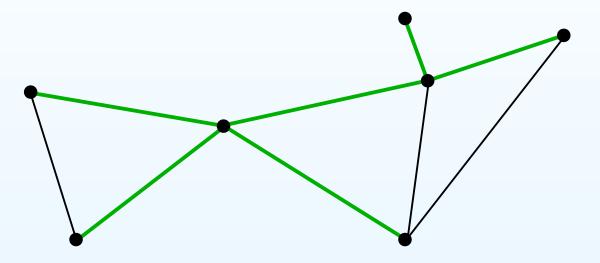
Graph Streaming

- Stream consists of the edges of E for a graph G=(V,E)
- ullet Each edge of E occurs exactly once in the stream
- V = [n] and n is known by the algorithm
- This is known as a vanilla or insertion-only graph stream
- We let m = |E| be the stream length
- We allow space $O(n(\log n)^c)$, constant c ("semi-streaming" algorithm)
- One exception is our spanner algorithm at the end of the lecture

Graph Connectivity

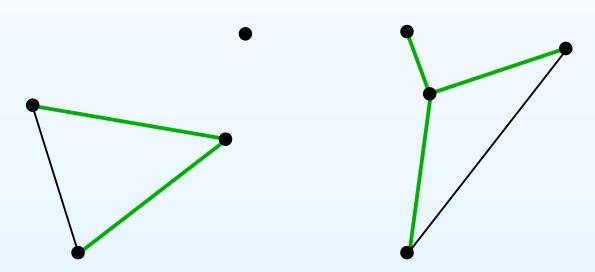
- G is undirected
- Problem: determine if G is connected
- Easy with O(m+n) words of space
- We give an algorithm using only $O(n \log n)$ bits of space
- This is close to a lower bound of $\Omega(n)$ bits

Spanning Tree and Spanning Forest



Spanning Tree and Spanning Forest

- \bullet $\ \,$ $\$ $\ \,$ $\$ $\ \,$ $\$ $\ \,$ $\ \,$ $\$ $\$ $\ \,$ $\$ $\ \,$ $\$ $\$ $\ \,$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\ \,$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$
- Spanning forest of a graph G=(V,E): consists of a spanning tree for each connected component of G



Spanning Tree and Spanning Forest

- Spanning tree of a connected graph G=(V,E): a tree in G with vertex set V
- Spanning forest of a graph G=(V,E): consists of a spanning tree for each connected component of G
- ullet G is connected \Leftrightarrow any spanning forest of G is a spanning tree of G
- Any spanning tree of a connected k-vertex graph has k-1 edges
- Thus, G is connected \Leftrightarrow any spanning forest of G has n-1 edges

Graph Connectivity Algorithm: Correctness

• Pseudo-code (assume G has more than one vertex):

Graph Connectivity Algorithm

Initialize: $F \leftarrow \emptyset$, connected \leftarrow false

Process(token
$$\{u, v\}$$
):
if $F \cup \{\{u, v\}\}$ has no cycle then
 $F \leftarrow F \cup \{\{u, v\}\}$
if $|F| = n - 1$ then connected \leftarrow true

Output: connected

- Correctness:
 - \circ F is the edges of a spanning forest of the part of G seen so far (exercise)
 - \circ At termination: $|F| = n 1 \Leftrightarrow G$ is connected (previous slide)

Graph Connectivity Algorithm: Space Analysis

• Pseudo-code (assume G has more than one vertex):

Graph Connectivity Algorithm

Initialize: $F \leftarrow \emptyset$, connected \leftarrow false

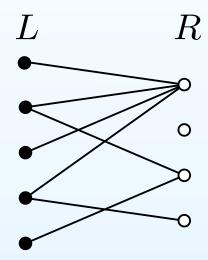
Process(token
$$\{u, v\}$$
):
if $F \cup \{\{u, v\}\}$ has no cycle then
 $F \leftarrow F \cup \{\{u, v\}\}$
if $|F| = n - 1$ then connected \leftarrow true

Output: connected

- Space used:
 - \circ Dominated by |F|
 - \circ Since $|F| \le n-1$, the algorithm uses O(n) words of space
 - \circ This is $O(n \log n)$ bits

Bipartiteness Testing

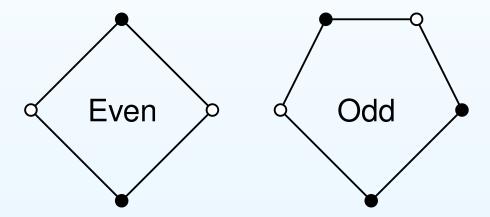
- An undirected graph G=(V,E) is *bipartite* if there is a partition (L,R) of V where each edge has one endpoint in L and one in R
- Equivalent to saying that G is 2-colorable (exercise)



- ullet Bipartiteness testing: determine if G is bipartite
- We give an algorithm using $O(n \log n)$ bits of space

Odd and Even Cycles

- A cycle is *odd* if it has an odd number of edges
- Otherwise, it is even
- An even cycle can be 2-colored; an odd cycle cannot:



Bipartiteness Testing Algorithm

• Pseudo-code: Bipartiteness Testing Algorithm

Initialize: $F \leftarrow \emptyset$, is_bipartite \leftarrow true

 $\begin{aligned} \mathbf{Process}(\text{token } \{u,v\}) \colon \\ &\text{if } F \cup \{\{u,v\}\} \text{ has no cycle then} \\ &F \leftarrow F \cup \{\{u,v\}\} \\ &\text{else if } F \cup \{\{u,v\}\} \text{ has an odd cycle then} \\ &\text{is_bipartite} \leftarrow \text{false} \end{aligned}$

Bipartiteness Testing Algorithm: Space Analysis

• Pseudo-code: Bipartiteness Testing Algorithm

Initialize: $F \leftarrow \emptyset$, is_bipartite \leftarrow true

Process(token $\{u, v\}$):
if $F \cup \{\{u, v\}\}$ has no cycle then $F \leftarrow F \cup \{\{u, v\}\}$ else if $F \cup \{\{u, v\}\}$ has an odd cycle then
is_bipartite \leftarrow false

- Space is dominated by |F|
- F is a forest at any point in the algorithm
- Space in bits is thus $O(n \log n)$

Bipartiteness Testing Algorithm: Correctness

• Pseudo-code: Bipartiteness Testing Algorithm

Initialize: $F \leftarrow \emptyset$, is_bipartite \leftarrow true

Process(token $\{u, v\}$):
if $F \cup \{\{u, v\}\}$ has no cycle then $F \leftarrow F \cup \{\{u, v\}\}$ else if $F \cup \{\{u, v\}\}$ has an odd cycle then
is_bipartite \leftarrow false

- Assume first that the algorithm returns false
- Want to show that G is not bipartite
- When processing some $\{u,v\} \in E$, $F \cup \{\{u,v\}\}$ contained an odd cycle which cannot be 2-colored
- ullet This odd cycle is in G so G is not bipartite

Bipartiteness Testing Algorithm: Correctness

• Pseudo-code: Bipartiteness Testing Algorithm

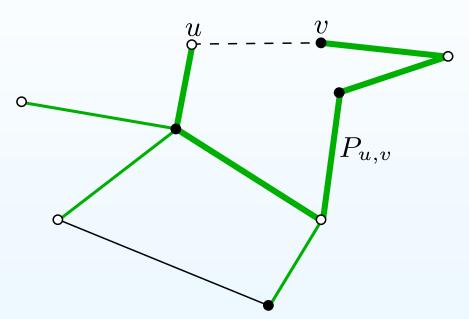
Initialize: $F \leftarrow \emptyset$, is_bipartite \leftarrow true

Process(token $\{u, v\}$): if $F \cup \{\{u, v\}\}$ has no cycle then $F \leftarrow F \cup \{\{u, v\}\}$ else if $F \cup \{\{u, v\}\}$ has an odd cycle then is_bipartite \leftarrow false

- Now, assume true is returned; want to show that G is 2-colorable
- Let $K:[n] \to \{0,1\}$ be a 2-coloring of forest F (exercise)
- Will show that for any $\{u,v\} \in E$, $K(u) \neq K(v)$
- This is clear if $\{u,v\} \in F$ so assume $\{u,v\} \notin F$
- Let P_{uv} be the path from u to v in F (exercise)
- $C_{uv} = P_{uv} \cup \{\{u, v\}\}\$ is a cycle in G
- When $\{u,v\}$ was processed, it reached the else case
- Algorithm returns true $\Rightarrow C_{uv}$ is even $\Rightarrow K(u) \neq K(v)$

Bipartiteness Testing Algorithm: Correctness

• Illustration:



- Now, assume true is returned; want to show that G is 2-colorable
- Let $K : [n] \to \{0,1\}$ be a 2-coloring of forest F (exercise)
- Will show that for any $\{u,v\} \in E$, $K(u) \neq K(v)$
- This is clear if $\{u,v\} \in F$ so assume $\{u,v\} \notin F$
- Let P_{uv} be the path from u to v in F (exercise)
- $C_{uv} = P_{uv} \cup \{\{u, v\}\}\$ is a cycle in G
- When $\{u, v\}$ was processed, it reached the else case
- Algorithm returns true $\Rightarrow C_{uv}$ is even $\Rightarrow K(u) \neq K(v)$

Distance Estimation

- Given undirected unweighted graph G=(V,E), parameter $t\geq 1$
- $\delta_G(u,v)$: shortest path distance between u and v in G
- Distance estimation:
 - \circ Given query vertex pair (u, v)
 - Return stretch t estimate $\hat{\delta}_G(u,v)$ of $\delta_G(u,v)$:

$$\delta_G(u, v) \le \hat{\delta}_G(u, v) \le t \cdot \delta_G(u, v)$$

• t-spanner of G: subgraph H such that for all $u, v \in V$,

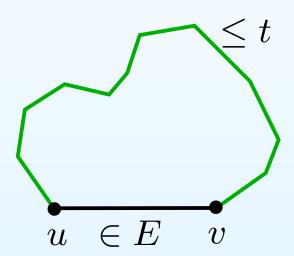
$$\delta_H(u,v) \le t \cdot \delta_G(u,v)$$

- Since H is a subgraph of G, we also have $\delta_G(u,v) \leq \delta_H(u,v)$
- ullet Our distance estimation algorithm maintains a t-spanner
- Queries are answered by simply running BFS in the t-spanner

t-Spanner Edge Property

- $\bullet \quad \text{Let H be a subgraph of $G=(V,E)$ and let $t\geq 1$}$
- H has the t-spanner edge property if for all $\{u,v\} \in E$,

$$\delta_H(u,v) \leq t$$



t-Spanner Edge Property

- Claim: H is a t-spanner of $G \Leftrightarrow H$ has the t-spanner edge property
- Proof: exercise (and later in the lecture)

Spanner Algorithm

• Pseudo-code: t-spanner Algorithm

Initialize: $H \leftarrow \emptyset$

Process(token $\{u, v\}$): if $\delta_H(u, v) \ge t + 1$ then $H \leftarrow H \cup \{\{u, v\}\}$

Output(x,y): $\delta_H(x,y)$

Spanner Algorithm: Correctness

• Pseudo-code: *t*-spanner Algorithm

Initialize: $H \leftarrow \emptyset$

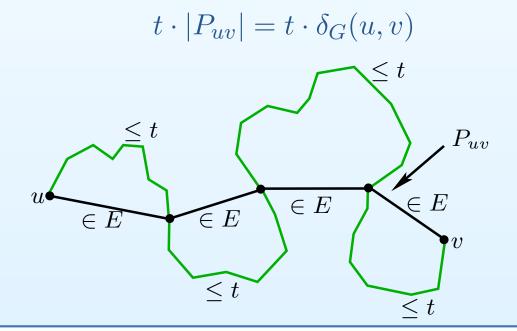
Process(token $\{u, v\}$): if $\delta_H(u, v) \ge t + 1$ then $H \leftarrow H \cup \{\{u, v\}\}$

Output(x,y): $\delta_H(x,y)$

- When an edge $e = \{u, v\}$ is processed, either:
 - \circ e was added to H, or
 - $\circ \quad \delta_H(u,v) \leq t$
- In both cases, $\delta_H(u,v) \leq t$ after e is processed
- ullet This also holds at any later point as edges are not removed from H
- t-spanner edge property $\Rightarrow H$ is a t-spanner of processed edges
- ullet At termination, H is a t-spanner of G

Proving the *t***-Spanner Edge Property**

- Claim: H is a t-spanner of $G \Leftrightarrow H$ has the t-spanner edge property
- Proof of " \Rightarrow ": $\{u,v\} \in E \Rightarrow \delta_G(u,v) = 1 \Rightarrow \delta_H(u,v) \leq t$
- Proof of "⇐":
 - \circ Assume H has the t-spanner edge property and let $u,v\in V$
 - \circ Let P_{uv} be a shortest path in G (trivial if P_{uv} does not exist).
 - \circ For any edge $\{a,b\}$ of P_{uv} , $\delta_H(a,b) \leq t$
 - \circ Thus, H has a path from a to b of length at most



Girth of a Graph

- *Girth* of a graph H: length of its shortest cycle
- We denote it by $\gamma(H)$
- If H is acyclic, we define $\gamma(H)=\infty$

Spanner Algorithm: Space Analysis

• Pseudo-code: t-spanner Algorithm

Initialize: $H \leftarrow \emptyset$

Process(token $\{u, v\}$): if $\delta_H(u, v) \ge t + 1$ then $H \leftarrow H \cup \{\{u, v\}\}$

Output(x,y): $\delta_H(x,y)$

- Space is $O(|E(H)| \log n)$ bits
- It can be shown that $\gamma(H) \geq t + 2$ (exercise)
- We will use this to bound |E(H)|

Girth and Max Number of Edges

- Theorem:
 - \circ Given undirected graph H with m edges and n vertices
 - \circ Let $k \geq 2$ be an integer such that $\gamma(H) \geq k$
 - o Then:

$$m < n + n^{1+1/\lfloor (k-1)/2 \rfloor}$$

- For the graph H in our algorithm, $\gamma(H) \geq t+2$
- Theorem with k = t + 2: the number of edges in this graph is

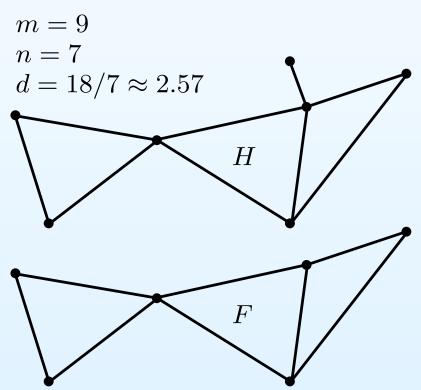
$$O\left(n^{1+1/\lfloor (k-1)/2\rfloor}\right) = O\left(n^{1+1/\lfloor (t+1)/2\rfloor}\right) = O\left(n^{1+2/t}\right)$$

Space (in bits) used by algorithm:

$$O\left(n^{1+2/t}\log n\right)$$

Proof of the Theorem: Removing Small-Degree Vertices

- Let d denote the average degree in H
- Note that $\sum_{v \in V} \deg_H(v) = 2m$ since each edge is counted twice
- Thus, d = 2m/n
- Construct subgraph F of H by removing vertices of degree < d/2
- ullet By construction, F has minimum degree at least d/2
- Since F is a subgraph of H, $\gamma(F) \geq \gamma(H) \geq k$



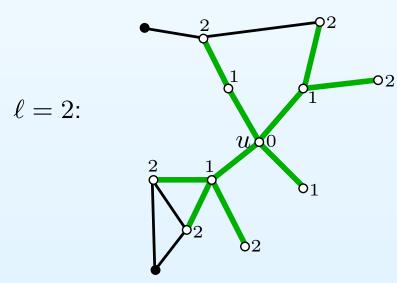
Proof of the Theorem: Tree Subgraph

- Let $\ell = \lfloor (k-1)/2 \rfloor$ and $u \in V$
- Let $B_u = (V_u, E_u)$ be subgraph of F visited by a BFS search from u up to distance ℓ :

$$V_{u} = \{ v \in V \mid \delta_{F}(u, v) \leq \ell \}$$

$$E_{u} = \{ (v, w) \in E(F) \mid \min\{\delta_{F}(u, v), \delta_{F}(u, w)\} \leq \ell - 1 \}$$

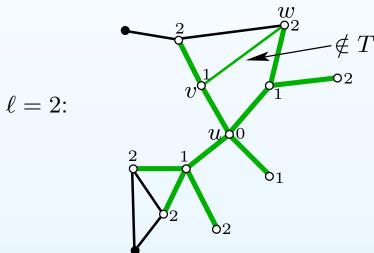
• Example with white vertices in V_u and green edges in E_u :



• We will show that B_u is a tree (exercise)

Proof that B_u is a Tree

- B_u is connected as it contains a BFS tree T
- Want to show $B_u = T$
- Assume for contradiction that B_u has an edge (v, w) not in T



Recall:

$$E_u = \{(v, w) \in E(F) \mid \min\{\delta_F(u, v), \delta_F(u, w)\} \le \ell - 1\}$$

• Since $\ell = \lfloor (k-1)/2 \rfloor$, B_u has a cycle of length at most

$$\delta_T(u,v) + \underbrace{\delta_{B_u}(v,w)}_{-1} + \delta_T(w,u) \le (\ell-1) + 1 + \ell = 2\ell < k$$

• But then $\gamma(B_u) < \bar{k}$, contradicting that $\gamma(B_u) \ge \gamma(F) \ge k$

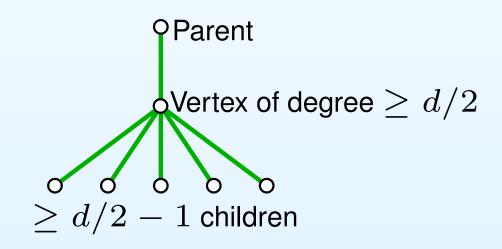
Proof of the Theorem: Showing that $m \leq n + n^{1+1/\ell}$

• Have shown that $B_u = (V_u, E_u)$ is a BFS tree from u where

$$V_{u} = \{ v \in V \mid \delta_{F}(u, v) \leq \ell \}$$

$$E_{u} = \{ (v, w) \in E(F) \mid \min\{\delta_{F}(u, v), \delta_{F}(u, w)\} \leq \ell - 1 \}$$

• F has min degree at least $d/2 \Rightarrow$ each non-leaf vertex in B_u has at least d/2-1 children



Proof of the Theorem: Showing that $m \leq n + n^{1+1/\ell}$

• Have shown that $B_u = (V_u, E_u)$ is a BFS tree from u where

$$V_{u} = \{ v \in V \mid \delta_{F}(u, v) \leq \ell \}$$

$$E_{u} = \{ (v, w) \in E(F) \mid \min\{\delta_{F}(u, v), \delta_{F}(u, w)\} \leq \ell - 1 \}$$

- F has min degree at least $d/2 \Rightarrow$ each non-leaf vertex in B_u has at least d/2-1 children
- If n' is the number of vertices at distance ℓ from u in B_u ,

$$n \ge n' = \left(\frac{d}{2} - 1\right)^{\ell} = \left(\frac{2m/n}{2} - 1\right)^{\ell} = \left(\frac{m}{n} - 1\right)^{\ell}$$

ullet Isolating m shows the theorem:

$$n \ge \left(\frac{m}{n} - 1\right)^{\ell} \Leftrightarrow n^{1/\ell} \ge \frac{m}{n} - 1 \Leftrightarrow n^{1+1/\ell} \ge m - n$$