Image Analysis (02502)
Advanced Topics

Claes Ladefoged, PhD

Claes N. Ladefoged

- MSc from Computer Science KU
- PhD in Medicine from SUND
- Head of AI Research at Rigshospitalet
- Associate Professor, DTU Compute

Overview

Data acquisition and processing in an imaging department

Patient

Scanner

Data storage

Image analysis

Preprocessing

- Data compression
- Intensity normalization
- Intensity Augmentation
- Intensity mapping
- Filtering

Data compression

- Representation of outlines

$\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}\right]$

Data compression

- CT values are usually defined in [-1024;3071] HU
- Values are usually stored as unsigned integer
- Large part of the volume is air (-1024 HU)

$$
F(x)=a x+b
$$

	Slope (a): 1
Header	Intercept (b): -1024
2D	Stored values:
Pixel Array	$[0,0,0,1034, \ldots, 1324,0,0]$

Read values:
[-1024,-1024,-1024,10,...,300,-1024,-1024]

Quiz 1

- An image containing values ranging from 0 to 52,427 needs to be stored in DICOM format
- The DICOM file has to be in the type SHORT (max value $=32,767$)
-What can the slope and intercept be?
- Slope 1.4 and intercept 1
- Slope 1.6 and intercept 0
- Slope 1 and intercept -19,660

menti.com

Code: 74191151

Intensity normalization

- Conventional MRI intensites (T1-w, T2-w, PD, FLAIR) are acquired in arbitrary units

Intensity normalization

Some available mapping functions:

Standardization

- Min-max scaling

$$
g(x, y)=\frac{f(x, y)-v_{\min }}{v_{\max }-v_{\min }}
$$

- Histogram stretching $\quad g(x, y)=\frac{v_{\max , d}-v_{\min , d}}{v_{\max }-v_{\min }}\left(f(x, y)-v_{\min }\right)+v_{\min , d}$
- Z-normalization

$$
g(x, y)=\frac{f(x, y)-\mu}{\sigma}
$$

Be aware when high intensity areas are present!
Z-normalization is the de-facto standard for most MRI-based preprocessing What about images with non-arbitrary units (CT, PET)?

Intensity normalization

Normalize relative to a reference region before scaling

Examples:

- Background region in brain
- Liver region in whole-body imaging

Intensity mapping

[-1024;3071] HU

E.g. by histogram stretching or intensity rescaling:

Each image is mapped from $v_{\text {min }}$ and $v_{\text {max }}$ to $v_{\text {min,d }}$ and $v_{\text {max,d }}$ (often 0-255) using:

$$
g(x, y)=\frac{f(x, y)-v_{\min }}{v_{\max }-v_{\min }} *\left(v_{\max , d}-v_{\min , d}\right)+v_{\min , d}
$$

followed by clamping values outside the range

Intensity normalization

a.u.

Augmentation

Quiz 2

- A model is trained to predict the percieved age of a patients' brain given an MRI
- The model was trained with data containing ages of 18 to 99 , so was scaled using:

$$
\begin{array}{r}
\qquad g(x, y)=\frac{f(x, y)-v_{\min }}{v_{\max }-v_{\min }} *\left(v_{\max , d}-v_{\text {min }, d}\right)+v_{\text {min,d }} \\
\text { where }\left(v_{\min }, v_{\max }\right)=(18,99) \text { and }\left(v_{\min , d}, v_{\max , d}\right)=(0,1)
\end{array}
$$

- The model predict 0.78 for a given MRI. What is the predicted age (in years) of the patient?
- 63
- 70
- 81
- 95

Intensity mapping

- Two MR images acquired with different echo times TE1 << TE2
- Different intensities are expected in bone but not in air and tissue

Frequency

MR intensity
Frequency

MR intensity

Intensity mapping

Normalized Joint histogram

Intensity mapping

$$
R_{2}^{*}=\frac{\ln \left(U T E_{T E 1}\right)-\ln \left(U T E_{T E 2}\right)}{T E 2-T E 1}
$$

Intensity mapping

Intensity mapping

Thresholded signal

> \% difference w/ Thresholded signal

Registration

- Interpolation
- Intra subject registration
- Same session
- Between sessions
- Inter subject registration

Interpolation

Label interpolation \rightarrow Nearest Neighbour

[^0]
Quiz 3

- In a 4-connectivity setting, what would the color of the white center pixel be assigned when using nearest neighbour interpolation?
- Green
- Blue
- Red

Registration

- Intra subject

Between two similar modalities

Between two timepoints

Between two different modalities

Translation and rotation are used for intra subject registration
Scaling mainly used for inter subject registration

Registration

Global step:

Search for overlap at low-to-high resolution

Registration

Between two timepoints

Between two similar modalities

Between two different modalities

Registration

Between two timepoints

Between two similar modalities

Between two different modalities

Registration

- Intra-scan motion correction usually requires sensors

Part of the acquisition

30 min PET

PET F1		PET F2		PET F3		PET F4		PET F5		F6
MR_{1}	MR		MR_{3}		MR_{4}		MR_{5}		MR ${ }_{6}$	
Nav_{1}		Nav_{2}		Nav_{3}	3	Nav_{4}		Nav_{5}		

Wearable sensors
External sensors

Quburbuahr AMMM

Registration

Respiratory and cardiac motion correction for PET/MR

Figure: https://doi.org/10.1016/j.media.2017.08.002
$I^{M R I}$ is target MRI
$J_{n}^{M R I}$ is warped atlas n \bar{I} is mean of I
$\sigma(I)$ is standard deviation of I

Registration

- Goal is to obtain a synthetic CT based on a patient's own MRI

Simplest solution:

Find best matching warped MRI
$N C C_{n}=\frac{1}{N} \frac{\left\langle I^{M R I}-\overline{I^{M R I}}, J_{n}^{M R I}-\overline{J_{n}^{M R I}}\right\rangle}{\sigma\left(I^{M R I}\right) \sigma\left(J_{n}^{M R I}\right)}$
More complex solution:

1. For each voxel, extract patch and compute local NCC (LNCC)
2. Rank the patches based on their LNCC
3. Fuse the CT values based on their ranks
(higher rank = higher weight)

Registration

- Goal is to obtain a synthetic CT based on a patient's own MRI

Single atlas

LNCC approach

Actual MR

Simplest solution:

Find best matching warped MRI
$N C C_{n}=\frac{1}{N} \frac{\left\langle I^{M R I}-\overline{I^{M R I}}, J_{n}^{M R I}-\overline{J_{n}^{M R I}}\right\rangle}{\sigma\left(I^{M R I}\right) \sigma\left(J_{n}^{M R I}\right)}$
More complex solution:

1. For each voxel, extract patch and compute local NCC (LNCC)
2. Rank the patches based on their LNCC
3. Fuse the CT values based on their ranks
(higher rank = higher weight)

Detection

- Segmentation
- Detection
- Tracking

Segmentation

- Label fusion

Target Image

Segmentation result

Fuse labels to final class (e.g. by majority voting) for each patch

Quiz 4

- The 10 estimates for a class label are found after registration.
- [1, 5, 2, 1, 2, 5, 4, 5, 2, 2]
- Using majority voting, what is the final predicted class?
- Answers:
- 1
- 2
- 4
- 5

Detection

- Determine the Callosal angle
- Steps

1. Align MRI to standard space to select standard center slice
2. Determine first row without brain tissue in center columns
3. Fit a line to brain tissue points for each side
4. Determine angle between lines

Detection

Tracking

- Tracking of objects over time to detect progression

Step 1
Register images

Step 2
Segment lesions

Step 3
Connected component analysis

Tracking

Tracking

- Tracking of objects over time to detect progression

Invert transformation

Classification (and more)

- Template matching
- Feature engineering
- Random Forest
- Active Shape Models
- Active Contours

Template matching

$$
g(x, y)=\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot f(x+i, y+j)
$$

Examples of h :

Reference

Resulting g

Feature engineering

What is relevant to know about this image to classify each voxel/pixel?

- Edges?
- Shapes?

Feature engineering - Local Binary Patterns

Tunable parameters include radius (distance between center and points) and number of points on grid

Quiz 5

- Given the read matrix, what is the calculated LBP value
- 163
- 167
- 171
- 180

Read matrix

6	4	6
15	5	4
10	9	3

Quiz 5

- Given the read matrix, what is the calculated LBP value
- 163
- 167
- 171
- 180

Read matrix

6	4	6
15	5	4
10	9	3

$10100111=128+32+4+2+1=167$

Feature engineering - Local Binary Patterns

Read points Binary

30	20	35
28	10	41
15	37	45

11111111

Compare
to center

1	1	1
1	0	1
1	1	1

Feature engineering

Normalized

Blurred

Gradient magnitude

Spatial-x

Spatial-y

R2*

LBP

How to we combine these into a voxel classification model?

[^1]
Feature engineering

Repeat for all voxels:
[0.65, 0.61, 0.5, 5, -10, 0.25, 231, ...] $[0.45,0.66,0.4,6,-12,0.24,251, \ldots]$

Normalize to 0-1 range
[0.61, 0.59, 0.63, 0.5, 0.11, 0.25, 0.88, ...] [0.00] $[0.41,0.65,0.45,0.6,0.08,0.24,0.95, \ldots]$
[0.89]
$[0.81,0.38,0.12,0.2,0.31,0.55,0.45, \ldots] \quad[0.45]$

Random Forest

$$
[\mathrm{n}][0.81,0.38,0.12,0.2,0.31,0.55,0.45, \ldots] \quad[0.45]
$$

Decision tree

- Multiple trees make a forest
-Why random?
- Each tree sees a random data sample with replacement (Bootstrap)
- Each tree sees a random subset of the variables

New datapoint: [0.65, 0.33, ...,]
Mean of results (Aggregating): $\bar{y}=\frac{1}{n} \sum_{i} \overline{y_{i}}=\frac{1}{3}(0.65+0.61+0.78)=\underline{0.68}$

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:
- 0.45
-0.50
-0.80
-0.48

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:
- 0.45
-0.50
-0.80
-0.48

$(0.56+0.49+0.45) / 3=0.5$

Random forest

- Example output:
- 100 trees
- n=25 patients
- Features from
- Original and filtered images
- Edge enhanced
- R2*
- LBP
- Trained with RandomForestRegressor from sklearn

Increasing complexity..

(Potential for) high level of interpretability

Neural network

Limited interpretability

Neural Networks

Neural Networks

- Each neuron contain a value, its "activation"
- The values in the input are the pixel values
- The value at the last output layer represents the likelihood of that digit
- f is an activation function (e.g. sigmoid)
\# weights: $784 \times 4+4 \times 4+4 \times 10$
\# biases: $4+4+10$
Total parameters: 3,210
"Cost" of the difference:
$\sum(\bar{y}-y)^{2}$

Neural Networks

Load and prepare data

Neural Networks


```
from tensorflow.keras.datasets import mnist ((trainX, trainY), (testX, testY)) = mnist.load_data()
\# Vectorize
trainX \(=\) trainX.reshape((trainX.shape[0], \(28 * 28 * 1)\) )
testX = testX.reshape((testX.shape[0], 28 * 28 * 1))
# scale data to the range of [0, 1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0
```

Define model

```
model = Sequential()
```

model.add(Dense(4, input_shape=(784,), activation="sigmoid")) model.add(Dense(4, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Train model

```
model.compile(
    loss="categorical_crossentropy",
    optimizer=SGD(0.01),
    metrics=["accuracy"])
model.fit(
    trainX, trainY, validation_data=(testX, testY),
    epochs=100, batch_size=128)
```


Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist ((trainX, trainY), (testX, testY)) = mnist.load_data()
\# Vectorize
trainX $=$ trainX.reshape((trainX.shape[0], $28 * 28 * 1)$) testX $=$ testX.reshape((testX.shape[0], 28 * 28 * 1)) \# scale data to the range of $[0,1]$
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0

Define model

model = Sequential()

model.add(Dense(4, input_shape=(784,), activation="sigmoid")) model.add(Dense(4, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Train model

```
model.compile(
    loss="categorical_crossentropy",
    optimizer=SGD(0.01),
    metrics=["accuracy"])
model.fit(
    trainX, trainY, validation_data=(testX, testY),
    epochs=100, batch_size=128)
```


Active Shape Models - and more

Motivation: Artifacts in umaps result in loss of quantitative accuracy

NAC-PET $_{\text {MR }}$

μ-map

AC-PET ${ }_{M R}$

μ-map

AC-PET MR

Active Shape Models - and more

C

Active Shape Models - and more

Artifacts can be connected artificially with sinuses or background

Active Shape Models - and more

Inner holes $=$ Signal voids within the anatomical surface

Active Shape Models - and more

Artifacts can be separated from actual signal voids

How?

By the offset to a set of landmarks in 2D

Active Shape Models - and more

Procrustes analysis:

Transformation
$X_{i} \rightarrow \rho_{i} X_{i} H_{i}+T_{i}$
ρ : scaling
H: rotation
T : translation

Minimization problem

$$
\sum_{i<s}^{s}\left\|\left(\rho_{i} X_{i} H_{i}+T_{i}\right)-\left(\rho_{s} X_{s} H_{s}+T_{s}\right)\right\|_{F}^{2}
$$

Eigenvalue	$\frac{\lambda_{i}}{\lambda_{T}} \times 100 \%$
λ_{1}	41%
λ_{2}	25%
λ_{3}	19%
λ_{4}	8%
λ_{5}	5%
λ_{6}	2%

Active Shape Models - and more

Mode 1: Mouth, horizontal \& cerebellum
Mode 2: Chin
Mode 3: Aterior-posterior landmarks in respect to each other \& cerebellum

Active Shape Models - and more

Active Shape Models - and more

MRI

New patient MRI

Align

1. Blur MRI images from "atlas" patient and new patient
2. Align the two using rigid transformation
3. Apply the same transformation to the shape of the atlas patient

Active Shape Models - and more

Offset to mean shape:
$\mathrm{d} \mathbf{x}=\left(\mathrm{dx}_{1}, \ldots, \mathrm{dx}_{\mathrm{n}}\right)$

Projected to legal shape space:
$d \mathbf{y}=\phi^{\top} \mathrm{d} \mathbf{x}$

Active Shape Models - and more

Active Shape Models - and more

5 patients
650 non-artifact pixels
210 artifact pixels

Active Shape Models - and more

Offsets to a landmark in the training set
\square Classify using kNN

- For each pixel in a signal void
- Find the offset to each landmark
- Find 5-Nearest-Neighbors
- Majority of neighbor-labels decides the landmark
- Majority of landmark-labels decides the class

Classification:
y-offset

Active Shape Models - and more

Active Contours: Chan Vese

- "Outer holes" cannot be corrected easily by MRI
- NAC-PET holds information about outer contour
- ... but contains noise and needs to be delineated

Active Contours: Chan Vese

$$
\begin{aligned}
& F(\phi)>0 \\
& F(-\phi) \approx 0
\end{aligned}
$$

$F(\phi) \approx 0$
$F(-\phi)>0$
$F(\phi) \approx 0$
$\mathrm{F}(-\phi) \approx 0$

Active Contours: Chan Vese

What did you learn today

- Many of the topics taught during this course can be useful for image analysis at an imaging department in a hospital
- Topics like preprocessing are always used before any imaging project
- Registration are used to align scans within a patient examination, and across examinations
- Simple tools are often wanted as it
- Works well with limited data
- Strengthens the explainability of a method

[^0]: Nearest neighbour ensures integer (e.g. 0 and 1) values

[^1]: $[0.65,0.61,0.5,5,-10,0.25,231, \ldots]$

