

Image Analysis (02502)

Advanced Topics

Claes Ladefoged, PhD

Claes N. Ladefoged

- MSc from Computer Science KU
- PhD in Medicine from SUND
- Head of AI Research at Rigshospitalet
- Associate Professor, DTU Compute

Overview

Preprocessing

- Data compression
- Intensity normalization
- Intensity Augmentation
- Intensity mapping
- Filtering

DTU

Data compression

• Representation of outlines

Data compression

- CT values are usually defined in [-1024;3071] HU
- Values are usually stored as unsigned integer
- Large part of the volume is air (-1024 HU)

F(x) = ax + b

Quiz 1

- An image containing values ranging from 0 to 52,427 needs to be stored in DICOM format
- The DICOM file has to be in the type SHORT (max value = 32,767)
- What can the slope and intercept be?
 - Slope 1.4 and intercept 1
 - Slope 1.6 and intercept 0
 - Slope 1 and intercept -19,660

menti.com

Code: 7419 1151

• Conventional MRI intensites (T1-w, T2-w, PD, FLAIR) are acquired in arbitrary units

Standardization

Some available mapping functions:

• Min-max scaling

$$v(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}}$$

Histogram stretching

$$g(x,y) = \frac{v_{max,d} - v_{min,d}}{v_{max} - v_{min}} (f(x,y) - v_{min}) + v_{min,d}$$

Z-normalization

$$g(x,y) = \frac{f(x,y) - \mu}{\sigma}$$

Be aware when high intensity areas are present!

Z-normalization is the de-facto standard for most MRI-based preprocessing What about images with non-arbitrary units (CT, PET)?

Normalize relative to a reference region before scaling

Examples:

- Background region in brain
- Liver region in whole-body imaging

[-1024;3071] HU

E.g. by histogram stretching or intensity rescaling:

Each image is mapped from v_{min} and v_{max} to $v_{min,d}$ and $v_{max,d}$ (often 0-255) using:

$$g(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}} * (v_{max,d} - v_{min,d}) + v_{min,d}$$

followed by clamping values outside the range

[-150;250] HU

[-150;250] HU

Augmentation

Quiz 2

- A model is trained to predict the percieved age of a patients' brain given an MRI
- The model was trained with data containing ages of 18 to 99, so was scaled using:

$$g(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}} * (v_{max,d} - v_{min,d}) + v_{min,d}$$

where $(v_{min}, v_{max}) = (18, 99)$ and $(v_{min,d}, v_{max,d}) = (0, 1)$

- The model predict 0.78 for a given MRI. What is the predicted age (in years) of the patient?
 - 63
 - 70
 - 81
 - 95

- Two MR images acquired with different echo times TE1 << TE2
- Different intensities are expected in bone but not in air and tissue

Frequency

$$R_2^* = \frac{\ln(UTE_{TE1}) - \ln(UTE_{TE2})}{TE2 - TE1}$$

% difference w/ Thresholded signal

% difference w/ Scaled signal

Interpolation

DTU

- Intra subject registration
 - Same session
 - Between sessions
- Inter subject registration

Interpolation

Image interpolation \rightarrow Trilinear (or similar)

Label interpolation \rightarrow Nearest Neighbour

Nearest neighbour ensures integer (e.g. 0 and 1) values

Quiz 3

- In a 4-connectivity setting, what would the color of the white center pixel be assigned when using nearest neighbour interpolation?
 - Green
 - Blue
 - Red

Intra subject

Between two similar modalities

Between two timepoints

Different transformations: Translation Rotation Scaling Sheering

Between two different modalities

Translation and rotation are used for intra subject registration Scaling mainly used for inter subject registration

Global step:

Search for overlap at low-to-high resolution

Course search grid to find optimal translation and rotation

4mm

2mm

8mm

Similar modality cost function: Least squares Normalized correlation

Between two different modalities

Different modality cost-function: Mutual information

Between two timepoints

Between two similar modalities

Between two different modalities

Sagittal

Before registration After registration

Sagittal

Coronal

Coronal

• Intra-scan motion correction usually requires sensors

Part of the acquisition

Figure: https://doi.org/10.1016/j.media.2017.08.002

 I^{MRI} is target MRI J_n^{MRI} is warped atlas n \overline{I} is mean of I $\sigma(I)$ is standard deviation of I

• Goal is to obtain a synthetic CT based on a patient's own MRI

Simplest solution:

Find best matching warped MRI

$$NCC_{n} = \frac{1}{N} \frac{\langle I^{MRI} - \overline{I^{MRI}}, J_{n}^{MRI} - \overline{J_{n}^{MRI}} \rangle}{\sigma(I^{MRI})\sigma(J_{n}^{MRI})}$$

More complex solution:

- 1. For each voxel, extract patch and compute local NCC (LNCC)
- 2. Rank the patches based on their LNCC
- Fuse the CT values based on their ranks (higher rank = higher weight)

 I^{MRI} is target MRI J_n^{MRI} is warped atlas n \overline{I} is mean of I $\sigma(I)$ is standard deviation of I

• Goal is to obtain a synthetic CT based on a patient's own MRI

Difference to CT

Simplest solution:

Find best matching warped MRI

$$NCC_{n} = \frac{1}{N} \frac{\langle I^{MRI} - \overline{I^{MRI}}, J_{n}^{MRI} - \overline{J_{n}^{MRI}} \rangle}{\sigma(I^{MRI})\sigma(J_{n}^{MRI})}$$

More complex solution:

- 1. For each voxel, extract patch and compute local NCC (LNCC)
- 2. Rank the patches based on their LNCC
- Fuse the CT values based on their ranks (higher rank = higher weight)

31

Detection

- Segmentation
- Detection

DTU

Tracking

Segmentation

• Label fusion

Fuse labels to final class (e.g. by majority voting) for each patch

Atlas 1

Atlas N

. . .

Quiz 4

- The 10 estimates for a class label are found after registration.
 - [1, 5, 2, 1, 2, 5, 4, 5, 2, 2]
- Using majority voting, what is the final predicted class?
 - Answers:
 - 1
 - 2
 - 4
 - 5

Detection

- Determine the Callosal angle
- Steps
 - 1. Align MRI to standard space to select standard center slice
 - 2. Determine first row without brain tissue in center columns
 - 3. Fit a line to brain tissue points for each side
 - 4. Determine angle between lines

Detection

Tracking

• Tracking of objects over time to detect progression

Follow-up

Step 1 Register images

Step 2 Segment lesions

Step 3 Connected component analysis

Step 4 Tracking Global remapping New cluster **Overlapping clusters**

Tracking

• Tracking of objects over time to detect progression

Follow-up

Invert transformation

Classification (and more)

- Template matching
- Feature engineering
- Random Forest
- Active Shape Models
- Active Contours

DTU

Template matching

$$g(x,y) = \sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i,j) \cdot f(x+i,y+j)$$

Examples of h:

Reference

Resulting g

Feature engineering

What is relevant to know about this image to classify each voxel/pixel?

• Edges?

• Shapes?

Week #5, Blob features

42

2nd of May 2023 DTU Compute, Technical University of Denmark

Week #4, Filtering

Feature engineering – Local Binary Patterns

Tunable parameters include radius (distance between center and points) and number of points on grid

 $0x2^7 + 0x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$

Quiz 5

- Given the read matrix, what is the calculated LBP value
 - 163
 - 167
 - 171
 - 180

Read matrix

6	4	6
15	5	4
10	9	3

Quiz 5

- Given the read matrix, what is the calculated LBP value
 - 163
 - 167
 - 171
 - 180

Read matrix

6	4	6
15	5	4
10	9	3

1 0 1 0 0 1 1 1 = 128 + 32 + 4 + 2 + 1 = 167

Feature engineering – Local Binary Patterns

Feature engineering

Feature engineering

Reference value for each voxel

R	ep	ea	t fo	or	all	V	0	xe	IS:
---	----	----	------	----	-----	---	---	----	-----

[0.65, 0.61, 0.5, 5, -10, 0.25, 231, ...] [0.45, 0.66, 0.4, 6, -12, 0.24, 251, ...]

[0.87, 0.41, 0.1, 2, 25, 0.55, 131, ...]

Normalize to 0-1 range	
[0.61, 0.59, 0.63, 0.5, 0.11, 0.25, 0.88,]	[0.00]
[0.41, 0.65, 0.45, 0.6, 0.08, 0.24, 0.95,]	[0.89]

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, ...] [0.45]

Random Forest

[n] [0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, ...] [0.45]

0]

5]

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:

Random forest

- Example output:
 - 100 trees
 - n=25 patients
 - Features from
 - Original and filtered images
 - Edge enhanced
 - R2*
 - LBP
- Trained with RandomForestRegressor from sklearn

Increasing complexity...

Random Forest

 \bigcirc

 \bigcirc

Neural network

Limited interpretability

(Potential for) high level of interpretability

Neural Networks

Neural Networks

- Each neuron contain a value, its "activation"
 - The values in the input are the pixel values
 - The value at the last output layer represents the likelihood of that digit
 - f is an activation function (e.g. sigmoid)

weights: 784x4+4x4+4x10
biases: 4 + 4 + 10
Total parameters: 3,210

Input layer

Output layer

"Cost" of the difference: $\sum (\bar{y} - y)^2$

Neural Networks

Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist
((trainX, trainY), (testX, testY)) = mnist.load_data()

Vectorize

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1))
testX = testX.reshape((testX.shape[0], 28 * 28 * 1))
scale data to the range of [0, 1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0

Define model

model = Sequential()
model.add(Dense(4, input_shape=(784,), activation="sigmoid"))
model.add(Dense(4, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Train model

Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist
((trainX, trainY), (testX, testY)) = mnist.load_data()

Vectorize

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1))
testX = testX.reshape((testX.shape[0], 28 * 28 * 1))
scale data to the range of [0, 1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0

Define model

model = Sequential()
model.add(Dense(4, input_shape=(784,), activation="sigmoid"))
model.add(Dense(4, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Train model

model.compile(
 loss="categorical_crossentropy",
 optimizer=SGD(0.01),
 metrics=["accuracy"])

model.fit(
 trainX, trainY, validation_data=(testX, testY),
 epochs=100, batch_size=128)

Motivation: Artifacts in umaps result in loss of quantitative accuracy

µ-map

AC-PET_{MR}

NAC-PET_{MR}

Artifacts can be connected artificially with sinuses or background

Outer holes = Signal voids breaching the anatomical surface

Inner holes = Signal voids within the anatomical surface

Artifacts can be separated from actual signal voids

How? By the offset to a set of landmarks in 2D

Procrustes analysis:

Transformation

 $X_i \to \rho_i X_i H_i + T_i$

- ρ : scaling H : rotation
- T : translation

Minimization problem

$$\sum_{i < s}^{s} \left\| \left(\rho_{i} X_{i} H_{i} + T_{i} \right) - \left(\rho_{s} X_{s} H_{s} + T_{s} \right) \right\|_{F}^{2}$$

Landmarks on 7 patients

Eigenvalue	$rac{\lambda_i}{\lambda_T} imes 100\%$
λ_1	41%
λ_2	25%
λ_3	19%
λ_4	8%
λ_5	5%
λ_6	2%

Mode 1: Mouth, horizontal & cerebellum

Mode 2: Chin

Mode 3: Aterior-posterior landmarks in respect to each other & cerebellum

Mean patches from 5 patients

MRI

- 1. Blur MRI images from "atlas" patient and new patient
- 2. Align the two using rigid transformation
- 3. Apply the same transformation to the shape of the atlas patient

Cootes & Taylor, Comp. Vis. and Img. Under. 1995

Active Shape Models – and more

Offset to mean shape: $d\mathbf{x} = (dx_1,...,dx_n)$

Projected to legal shape space: dy= $\phi^T dx$

5 patients 650 non-artifact pixels 210 artifact pixels

Offsets to a landmark in the training set

□ Classify using kNN

- For each pixel in a signal void
 - Find the offset to each landmark
 - Find 5-Nearest-Neighbors
 - Majority of neighbor-labels decides the landmark
 - Majority of landmark-labels decides the class

x-offset

Active Contours: Chan Vese

- "Outer holes" cannot be corrected easily by MRI
- NAC-PET holds information about outer contour
- ... but contains noise and needs to be delineated

 $F(\phi) > 0$ $F(-\phi) \approx 0$

 $F(\phi) \approx 0$ $F(-\phi) > 0$

 $\begin{aligned} \mathsf{F}(\phi) &\approx \ \mathsf{0} \\ \mathsf{F}(-\phi) &\approx \ \mathsf{0} \end{aligned}$

Active Contours: Chan Vese

What did you learn today

- Many of the topics taught during this course can be useful for image analysis at an imaging department in a hospital
- Topics like preprocessing are always used before any imaging project
- Registration are used to align scans within a patient examination, and across examinations
- Simple tools are often wanted as it
 - Works well with limited data
 - Strengthens the explainability of a method

