

Image Analysis (02502)

Advanced Topics

Claes Ladefoged, PhD

Claes N. Ladefoged

- MSc from Computer Science KU
- PhD in Medicine from SUND
- Head of AI Research at Rigshospitalet
- Associate Professor, DTU Compute

Preprocessing

- Data compression
- Intensity normalization
- Intensity augmentation
- Intensity mapping
- Filtering

DTU

Data compression

Task: Store using fewest number of possitive digits

Image

1024 x 1024

1024 x 1024

/ 5

Data compression

<u>Task:</u> Store using fewest number of possitive digits

1024 x 1024

/ 5

+2

Data compression

Task: Store using fewest number of possitive digits

Label

1024 x 1024

Data compression

• Representation of outlines

Data compression

Slope (a): 1

- CT values are usually defined in [-1024;3071] HU
- Values are usually stored as unsigned integer
- Large part of the volume is air (-1024 HU)

F(x) = ax + b

 $[0,0,0,1034,\ldots,1324,0,0]$

Intercept (b): -1024

Stored values:

Read values:

Header

2D **Pixel Array**

Quiz 1

- An image containing values ranging from 0 to 52,427 needs to be stored in DICOM format
- The DICOM file has to be in the type SHORT (max value = 32,767)
- What can the slope and intercept be?
 - Slope 1.4 and intercept 1
 - Slope 1.6 and intercept 0
 - Slope 1 and intercept -19,660

menti.com

Intensity normalization

• Conventional MRI intensites (T1-w, T2-w, PD, FLAIR) are acquired in arbitrary units

Standardization

Some available mapping functions:

Min-max scaling

$$(x, y) = \frac{f(x, y) - v_{min}}{v_{max} - v_{min}}$$

Histogram stretching

$$g(x,y) = \frac{v_{max,d} - v_{min,d}}{v_{max} - v_{min}} (f(x,y) - v_{min}) + v_{min,d}$$

Z-normalization

$$g(x,y) = \frac{f(x,y) - \mu}{\sigma}$$

Be aware when high intensity areas are present!

Z-normalization is the de-facto standard for most MRI-based preprocessing What about images with non-arbitrary units (CT, PET)?

Intensity normalization

Normalize relative to a reference region before scaling

Examples:

- Background region in brain
- Liver region in whole-body imaging

[-1024;3071] HU

[-150;250] HU

E.g. by histogram stretching or intensity rescaling:

Each image is mapped from v_{min} and v_{max} to $v_{min,d}$ and $v_{max,d}$ (often 0-255) using:

$$g(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}} * (v_{max,d} - v_{min,d}) + v_{min,d}$$

followed by clamping values outside the range

[-150;250] HU

[-1000;0] HU

Intensity normalization

	Min-max
500 vs 600 HU	0.05
-50 vs 50 HU	0.05

with a=-1000 b=2000

[-1000, -100, 100, 1000]

Intensity normalization

Augmentation

Quiz 2

- A model is trained to predict the percieved age of a patients' brain given an MRI
- The model was trained with data containing ages of 18 to 99, so was scaled using:

$$g(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}} * (v_{max,d} - v_{min,d}) + v_{min,d}$$

where $(v_{min}, v_{max}) = (18, 99)$ and $(v_{min,d}, v_{max,d}) = (0, 1)$

- The model predict 0.78 for a given MRI. What is the predicted age (in years) of the patient?
 - 63
 - 70
 - 81
 - 95

Segmentation of air regions

- Two MR images acquired with different echo times TE1 << TE2
- Different intensities are expected in bone but not in air and tissue

Segmentation of air regions

MR intensity

Segmentation of air regions

Normalized Joint histogram

Frequency

x10⁵ 301

25

20

TE1

$$R_2^* = \frac{\ln(UTE_{TE1}) - \ln(UTE_{TE2})}{TE2 - TE1}$$

% difference w/ Thresholded signal

% difference w/ Scaled signal

Interpolation

DTU

- Intra subject registration
 - Same session
 - Between sessions
- Inter subject registration

Interpolation

Image interpolation \rightarrow Trilinear (or similar)

Label interpolation \rightarrow Nearest Neighbour

Nearest neighbour ensures integer (e.g. 0 and 1) values

Quiz 3

- In a 4-connectivity setting, what would the color of the white center pixel be assigned when using nearest neighbour interpolation?
 - Green
 - Blue
 - Red

• Intra subject

Between two similar modalities

Between two timepoints

Different transformations: Translation Rotation Scaling Sheering

Between two different modalities

Translation and rotation are used for intra subject registration Scaling mainly used for inter subject registration

Global step:

8mm

Search for overlap at low-to-high resolution

Course search grid to find optimal translation and rotation

4mm

2mm

Similar modality cost function: Least squares Normalized correlation

Between two different modalities

Different modality cost-function: Mutual information

After registration

Between two timepoints

Between two similar modalities

Sagittal

Between two different modalities

Before registration

Coronal

Sagittal

Coronal

Design a motion-compensated PET/MRI system

~ 10-20 min

~ 0.5 - 3 min

MRI

PET / MRI

• Intra-scan motion correction usually requires sensors

Part of the acquisition

Figure: https://doi.org/10.1016/j.media.2017.08.002

 I^{MRI} is target MRI J_n^{MRI} is warped atlas n \overline{I} is mean of I $\sigma(I)$ is standard deviation of I

• Goal is to obtain a synthetic CT based on a patient's own MRI

Simplest solution:

Find best matching warped MRI

$$NCC_{n} = \frac{1}{N} \frac{\langle I^{MRI} - \overline{I^{MRI}}, J_{n}^{MRI} - \overline{J_{n}^{MRI}} \rangle}{\sigma(I^{MRI})\sigma(J_{n}^{MRI})}$$

More complex solution:

- 1. For each voxel, extract patch and compute local NCC (LNCC)
- 2. Rank the patches based on their LNCC
- Fuse the CT values based on their ranks (higher rank = higher weight)

 I^{MRI} is target MRI J_n^{MRI} is warped atlas n \overline{I} is mean of I $\sigma(I)$ is standard deviation of I

• Goal is to obtain a synthetic CT based on a patient's own MRI

Simplest solution:

Find best matching warped MRI

$$NCC_{n} = \frac{1}{N} \frac{\langle I^{MRI} - \overline{I^{MRI}}, J_{n}^{MRI} - \overline{J_{n}^{MRI}} \rangle}{\sigma(I^{MRI})\sigma(J_{n}^{MRI})}$$

More complex solution:

- 1. For each voxel, extract patch and compute local NCC (LNCC)
- 2. Rank the patches based on their LNCC
- Fuse the CT values based on their ranks (higher rank = higher weight)

26th of November 2024 DTU Compute, Technical University of Denmark

Difference to CT

Detection

- Segmentation
- Detection

DTU

Tracking

Segmentation

Label fusion

Fuse labels to final class (e.g. by majority voting) for each patch

Atlas 1

Atlas N

. . .

Quiz 4

- The 10 estimates for a class label are found after registration.
 - [1, 5, 2, 1, 2, 5, 4, 5, 2, 2]
- Using majority voting, what is the final predicted class?
 - Answers:
 - 1
 - 2
 - 4
 - 5

Detection

- Determine the Callosal angle
- Steps
 - 1. Align MRI to standard space to select standard center slice
 - 2. Determine first row without brain tissue in center columns
 - 3. Fit a line to brain tissue points for each side
 - 4. Determine angle between lines

Detection

Tracking

• Tracking of objects over time to detect progression

Follow-up

Step 1 Register images

Step 2 Segment lesions

Step 3 Connected component analysis

Step 4 Tracking Global remapping New cluster **Overlapping clusters**

Tracking

• Tracking of objects over time to detect progression

Follow-up

Invert transformation

Classification (and more)

- Template matching
- Feature engineering
- Random Forest
- Active Shape Models
- Active Contours

DTU

Template matching

$$g(x,y) = \sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i,j) \cdot f(x+i,y+j)$$

Examples of h:

Reference

Feature engineering

What is relevant to know about this image to classify each voxel/pixel?

• Edges?

• Shapes?

Week #5, Blob features

48

26th of November 2024 DTU Compute, Technical University of Denmark

Week #4, Filtering

Feature engineering – Local Binary Patterns

Tunable parameters include radius (distance between center and points) and number of points on grid

 $0x2^7 + 0x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$

Quiz 5

- Given the read matrix, what is the calculated LBP value
 - 163
 - 167
 - 171
 - 180

Read matrix

From previous slide:

 $0x2^7 + 0x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$

Quiz 5

- Given the read matrix, what is the calculated LBP value
 - 163
 - 167
 - 171
 - 180

Read matrix

6	4	6
15	5	4
10	9	3

1 0 1 0 0 1 1 1 = 128 + 32 + 4 + 2 + 1 = 167

Feature engineering – Local Binary Patterns

Feature engineering

How to we combine these into a voxel classification model?

Which features are relevant for image classification?

Image features

Roundness

VS

Size (Largest diameter > 10 cm)

Convex (yes or no)

Color (is_yellow)

VS

VS

is_round From features to decision trees yes **Available features:** Roundness (is_round) is_yellow Color (is_yellow) \bullet Size (diameter>10cm) no yes **Rules:** yes Yes means you go left • Leaves cannot be empty \bullet

no

diameter>10cm

no

Build your own decision tree

GROUP A

HAS_FUR EATS_MEAT HAS_MANE LIVES_IN_WATER HAS_TEETH

(Birthdate is odd)

Rules:

- Yes means you go left
- Leaves cannot be empty

GROUP B (Birthdate is even)

BUILDS_DAM ATTACKS_HUMANS HAS_TEETH LIVES_IN_WATER

Build your own decision tree

FROM TREES TO A (RANDOM) FOREST

Random Forest

Observations (Training data)

- Each tree sees a random subset of the variables
- Each tree sees a random subset of the data points with replacement (Bootstrap)
- Multiple trees make a forest

Majority voting of result

Feature engineering

Feature engineering

Reference value for each voxel

[0.65, 0.61, 0.5, 5, -10, 0.25, 231, ...] [0.45, 0.66, 0.4, 6, -12, 0.24, 251, ...]

[0.87, 0.41, 0.1, 2, 25, 0.55, 131, ...]

. . .

Normalize to 0-1 range	
[0.61, 0.59, 0.63, 0.5, 0.11, 0.25, 0.88,]	[0.00]
[0.41, 0.65, 0.45, 0.6, 0.08, 0.24, 0.95,]	[0.89]

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, ...] [0.45]

Random Forest

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, ...] [n] [0.45]

- Multiple trees make a forest
 - Each tree sees a random data sample with replacement (Bootstrap)
 - Each tree sees a random subset of the variables

New datapoint: [0.65, 0.33, ...,]

Mean of results (Aggregating): $\bar{y} = \frac{1}{n} \sum_{i} \bar{y}_{i} = \frac{1}{3} (0.65 + 0.61 + 0.78) = 0.68$

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:

Random forest

- Example output:
 - 100 trees
 - n=25 patients
 - Features from
 - Original and filtered images
 - Edge enhanced
 - R2*
 - LBP
- Trained with RandomForestRegressor from sklearn

Increasing complexity..

Random Forest

(Potential for) high level of interpretability

Neural network

Neural Networks

Neural Networks

- Each neuron contain a value, its "activation"
 - The values in the input are the pixel values
 - The value at the last output layer represents the likelihood of that digit
 - f is an activation function (e.g. sigmoid)

weights: 784x4+4x4+4x10
biases: 4 + 4 + 10
Total parameters: 3,210

Input layer

Hidden layers

Output layer

"Cost" of the difference:

Neural Networks

Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist
((trainX, trainY), (testX, testY)) = mnist.load_data()

Vectorize

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1))
testX = testX.reshape((testX.shape[0], 28 * 28 * 1))
scale data to the range of [0, 1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0

Define model

model = Sequential()
model.add(Dense(4, input_shape=(784,), activation="sigmoid"))
model.add(Dense(4, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Train model

Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist
((trainX, trainY), (testX, testY)) = mnist.load_data()

Vectorize

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1))
testX = testX.reshape((testX.shape[0], 28 * 28 * 1))
scale data to the range of [0, 1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0

Define model

model = Sequential()
model.add(Dense(4, input_shape=(784,), activation="sigmoid"))
model.add(Dense(4, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))

Train model

model.compile(
 loss="categorical_crossentropy",
 optimizer=SGD(0.01),
 metrics=["accuracy"])

model.fit(
 trainX, trainY, validation_data=(testX, testY),
 epochs=100, batch_size=128)

Motivation: Artifacts in umaps result in loss of quantitative accuracy

µ-map

 $\mathsf{NAC}\operatorname{-}\mathsf{PET}_{\mathsf{MR}}$

µ-map

26th of November 2024 DTU Compute, Technical University of Denmark Artifacts can not be predicted just by knowing the amount of metal

Artifacts can be connected artificially with sinuses or background

Outer holes = Signal voids breaching the anatomical surface

Inner holes = Signal voids within the anatomical surface

Artifacts can be separated from actual signal voids

How?

By the offset to a set of landmarks in 2D

78

Procrustes analysis:

Transformation

 $X_i \otimes \Gamma_i X_i H_i + T_i$

- ρ : scaling H : rotation
- T : translation

Minimization problem

$$\overset{s}{\overset{s}{\underset{i < s}{\otimes}}} \left\| \left(\varUpsilon_{i} X_{i} H_{i} + T_{i} \right) - \left(\varUpsilon_{s} X_{s} H_{s} + T_{s} \right) \right\|_{F}^{2}$$

Landmarks on 7 patients

Eigenvalue	$rac{\lambda_i}{\lambda_T} imes 100\%$
λ_1	41%
λ_2	25%
λ_3	19%
λ_4	8%
$\lambda_5 \ \lambda_6$	5%
λ_6	2%

Mode 1: Mouth, horizontal & cerebellum

Mode 2: Chin

Mode 3: Aterior-posterior landmarks in respect to each other & cerebellum

Mean patches from 5 patients

MRI

New patient MRI

- 1. Blur MRI images from "atlas" patient and new patient
- 2. Align the two using rigid transformation
- 3. Apply the same transformation to the shape of the atlas patient

Cootes & Taylor, Comp. Vis. and Img. Under. 1995

Active Shape Models – and more

Offset to mean shape: $d\mathbf{x} = (dx_1,...,dx_n)$

Projected to legal shape space: $d\mathbf{y} = \phi^T d\mathbf{x}$

5 patients 650 non-artifact pixels 210 artifact pixels

Offsets to a landmark in the training set

x-offset

□ Classify using kNN

- For each pixel in a signal void
 - Find the offset to each landmark
 - Find 5-Nearest-Neighbors
 - Majority of neighbor-labels decides the landmark
 - Majority of landmark-labels decides the class

y-offset

Active Contours: Chan Vese

- "Outer holes" cannot be corrected easily by MRI
- NAC-PET holds information about outer contour
- ... but contains noise and needs to be delineated

Active Contours: Chan Vese

What did you learn today

- Many of the topics taught during this course can be useful for image analysis at an imaging department in a hospital
- Topics like preprocessing are always used before any imaging project
- Registration are used to align scans within a patient examination, and across examinations
- Simple tools are often wanted as it
 - Works well with limited data
 - Strengthens the explainability of a method

