

Image Analysis (02502)

Advanced Topics

Claes Ladefoged, PhD

Claes N. Ladefoged

- MSc from Computer Science KU
- PhD in Medicine from SUND
- Head of AI Research at Rigshospitalet
- Associate Professor, DTU Compute

Overview

Preprocessing

- Data compression
- Intensity normalization
- Intensity augmentation
- Intensity mapping
- Filtering

Task: Store using fewest number of possitive digits

Task: Store using fewest number of possitive digits

Image **Label**

Task: Store using fewest number of possitive digits

4 3 5 5 0 0

• Representation of outlines

Slope (a): 1

- CT values are usually defined in [-1024;3071] HU
- Values are usually stored as unsigned integer
- Large part of the volume is air (-1024 HU)

 $F(x) = ax + b$

[0,0,0,1034,…,1324,0,0]

Intercept (b): -1024

Stored values:

Read values:

2D

Header

Pixel Array

Quiz 1

- An image containing values ranging from 0 to 52,427 needs to be stored in DICOM format
- The DICOM file has to be in the type SHORT (max value $= 32,767$)
- What can the slope and intercept be?
	- Slope 1.4 and intercept 1
	- Slope 1.6 and intercept 0
	- Slope 1 and intercept -19,660

menti.com

• Conventional MRI intensites (T1-w, T2-w, PD, FLAIR) are acquired in arbitrary units

Standardization

Some available mapping functions:

• Min-max scaling

$$
g(x, y) = \frac{f(x, y) - v_{min}}{v_{max} - v_{min}}
$$

• Histogram stretching

$$
g(x, y) = \frac{v_{max,d} - v_{min,d}}{v_{max} - v_{min}} (f(x, y) - v_{min}) + v_{min,d}
$$

• Z-normalization

$$
g(x,y) = \frac{f(x,y) - \mu}{\sigma}
$$

Be aware when high intensity areas are present!

Z-normalization is the de-facto standard for most MRI-based preprocessing What about images with non-arbitrary units (CT, PET)?

Normalize relative to a reference region before scaling

Examples:

- Background region in brain
- Liver region in whole-body imaging

[-1024;3071] HU

[-150;250] HU

E.g. by histogram stretching or intensity rescaling:

Each image is mapped from v_{min} and v_{max} to $v_{min,d}$ and $v_{max,d}$ (often 0-255) using:

$$
g(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}} * (v_{max,d} - v_{min,d}) + v_{min,d}
$$

followed by clamping values outside the range

[-150;250] HU

[-1000;0] HU

with a=-1000 b=2000

[-1000, -100, 100, 1000]

Intensity normalization

26th of November 2024 DTU Compute, Technical University of Denmark

Augmentation

Quiz 2

- A model is trained to predict the percieved age of a patients' brain given an MRI
- The model was trained with data containing ages of 18 to 99, so was scaled using:

$$
g(x,y) = \frac{f(x,y) - v_{min}}{v_{max} - v_{min}} * (v_{max,d} - v_{min,d}) + v_{min,d}
$$

where (v_{min}, v_{max}) = (18, 99) and $(v_{min,d}, v_{max,d})$ = (0, 1)

- The model predict 0.78 for a given MRI. What is the predicted age (in years) of the patient?
	- 63
	- 70
	- 81
	- 95

Segmentation of air regions

- $TE1 < TE2$
- Different intensities are expected in bone but not in air and tissue

Segmentation of air regions

MR intensity

Segmentation of air regions

Normalized Joint histogram

Frequency
 301

 $25₂$

 20_o

TE1

 $R_2^* =$ $\ln (UTE_{TE1}) - \ln (UTE_{TE2})$ $TE2 - TE1$

Thresholded signal

% difference w/ Scaled signal

• Interpolation

DTU
SS

- Intra subject registration
	- Same session
	- Between sessions
- Inter subject registration

Interpolation

Image interpolation → **Trilinear (or similar)**

Label interpolation → **Nearest Neighbour**

Nearest neighbour ensures integer (e.g. 0 and 1) values

Quiz 3

- In a 4-connectivity setting, what would the color of the white center pixel be assigned when using nearest neighbour interpolation?
	- Green
	- Blue
	- Red

• Intra subject

Different transformations: Translation Rotation Scaling Sheering

Between two similar modalities **Between two timepoints** Between two different modalities

Translation and rotation are used for intra subject registration Scaling mainly used for inter subject registration

Global step: Search for overlap at low-to-high resolution

Local optimization step:

Course search grid to find optimal translation and rotation

8mm 4mm 2mm

Similar modality cost function: Least squares Normalized correlation

Between two timepoints **Between two similar modalities** Between two different modalities

Different modality cost-function: Mutual information

Between two timepoints **Between two similar modalities** Between two different modalities

Before registration After registration

Sagittal Coronal

Sagittal Coronal

Design a motion-compensated PET/MRI system

PET

 \sim 10-20 min \sim 0.5 - 3 min

PET / MRI

• Intra-scan motion correction usually requires sensors

Part of the acquisition

Figure: https://doi.org/10.1016/j.media.2017.08.002

 I^{MRI} is target MRI J_n^{MRI} is warped atlas n \bar{l} is mean of I $\sigma(I)$ is standard deviation of I

• Goal is to obtain a synthetic CT based on a patient's own MRI

Simplest solution:

Find best matching warped MRI

$$
NCC_n = \frac{1}{N} \frac{\left\{I^{MRI} - \overline{I^{MRI}}, J_n^{MRI} - \overline{J_n^{MRI}}\right\}}{\sigma(I^{MRI}) \sigma(J_n^{MRI})}
$$

More complex solution:

- 1. For each voxel, extract patch and compute local NCC (LNCC)
- 2. Rank the patches based on their LNCC
- 3. Fuse the CT values based on their ranks (higher rank $=$ higher weight)

• Goal is to obtain a synthetic CT based on a patient's own MRI

26th of November 2024 DTU Compute, Technical University of Denmark

 I^{MRI} is target MRI J_n^{MRI} is warped atlas n \bar{l} is mean of I $\sigma(I)$ is standard deviation of I

Simplest solution:

Find best matching warped MRI

$$
NCC_n = \frac{1}{N} \frac{\langle I^{MRI} - \overline{I^{MRI}}, J_n^{MRI} - \overline{J_n^{MRI}} \rangle}{\sigma(I^{MRI}) \sigma(J_n^{MRI})}
$$

More complex solution:

- 1. For each voxel, extract patch and compute local NCC (LNCC)
- 2. Rank the patches based on their LNCC
- 3. Fuse the CT values based on their ranks (higher rank = higher weight)

Difference to CT
Detection

- Segmentation
- Detection

 $\frac{1}{2}$

• Tracking

Segmentation

• Label fusion

Fuse labels to final class (e.g. by majority voting) for each patch

Atlas 1 … Atlas *N*

Quiz 4

- The 10 estimates for a class label are found after registration.
	- $-$ [1, 5, 2, 1, 2, 5, 4, 5, 2, 2]
- Using majority voting, what is the final predicted class?
	- Answers:
		- 1
		- 2
		- 4
		- 5

Detection

- Determine the Callosal angle
- Steps
	- 1. Align MRI to standard space to select standard center slice
	- 2. Determine first row without brain tissue in center columns
	- 3. Fit a line to brain tissue points for each side
	- 4. Determine angle between lines

Detection

Tracking

• Tracking of objects over time to detect progression

Baseline Follow-up

Step 1 Register images

Step 2 Segment lesions

Step 3 Connected component analysis

Step 4 Tracking Global remapping **New cluster Overlapping clusters**

Tracking

• Tracking of objects over time to detect progression

Baseline Follow-up

Invert transformation

Classification (and more)

- Template matching
- Feature engineering
- Random Forest
- Active Shape Models
- Active Contours

Template matching

$$
g(x, y) = \sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot f(x + i, y + j)
$$

Examples of h:

Reference **Resulting g**

Feature engineering

What is relevant to know about this image to classify each voxel/pixel?

• Edges?

• Shapes?

Not circle like

Week #4, Filtering Week #5, Blob features

48

Feature engineering – Local Binary Patterns

Tunable parameters include radius (distance between center and points) and number of points on grid

 $0x^{27} + 0x^{26} + 1x^{25} + 1x^{24} + 1x^{23} + 0x^{22} + 1x^{21} + 1x^{20}$

Quiz 5

- Given the read matrix, what is the calculated LBP value
	- 163
	- 167
	- 171
	- 180

Read matrix

From previous slide:

 $0x^{27} + 0x^{26} + 1x^{25} + 1x^{24} + 1x^{23} + 0x^{22} + 1x^{21} + 1x^{20}$

Quiz 5

- Given the read matrix, what is the calculated LBP value
	- 163
	- 167
	- 171
	- 180

Read matrix

$1 0 1 0 0 1 1 1 = 128 + 32 + 4 + 2 + 1 = 167$

Feature engineering – Local Binary Patterns

Feature engineering

How to we combine these into a voxel classification model?

Which features are relevant for image classification?

Image features

Roundness

vs

vs

Size (Largest diameter > 10 cm)

Convex (yes or no)

Color (is_yellow)

vs

From features to decision trees is_round yes is_yellow yes no yes no **Available features:** • Roundness (is_round) • Color (is_yellow) • Size (diameter>10cm) **Rules:** • Yes means you go left • Leaves cannot be empty

no

diameter>10cm

Build your own decision tree

HAS_FUR EATS_MEAT HAS_MANE LIVES_IN_WATER LIVES_IN_WATER HAS_TEETH

Rules:

- Yes means you go left
- Leaves cannot be empty

GROUP A (Birthdate is odd) **CROUP B** (Birthdate is even)

> BUILDS_DAM ATTACKS_HUMANS HAS_TEETH

Build your own decision tree

FROM TREES TO A (RANDOM) FOREST

26th of November 2024 DTU Compute, Technical University of Denmark 59

Random Forest

Observations (Training data)

- Each tree sees a random subset of the variables
- Each tree sees a random subset of the data points with replacement (Bootstrap)
- Multiple trees make a forest

Majority voting of result

Feature engineering

Feature engineering

Reference value for each voxel

[0.65, 0.61, 0.5, 5, -10, 0.25, 231, …] $[0.45, 0.66, 0.4, 6, -12, 0.24, 251, \ldots]$

[0.87, 0.41, 0.1, 2, 25, 0.55, 131, …]

…

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, …] [0.45]

Random Forest

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, …] [0.45] [n]

– Each tree sees a random data sample with replacement (Bootstrap) – Each tree sees a random subset of the variables

New datapoint: **[0.65, 0.33, …,]**

Mean of results (Aggregating): $\bar{y} = \frac{1}{x}$ $\frac{1}{n}\sum_{i}\overline{y}_{i}=\frac{1}{3}$ $\frac{1}{3}(0.65 + 0.61 + 0.78) = 0.68$

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:

Quiz 6

- Using the 3 trained trees below, what is the predicted value after aggregating the output?
- Input data: [0.49, 0.56, 0.99, 0.32]
- Options:

Random forest

- Example output:
	- 100 trees
	- n=25 patients
	- Features from
		- Original and filtered images
		- Edge enhanced
		- R2*
		- LBP
- Trained with RandomForestRegressor from sklearn

Increasing complexity..

Random Forest

(Potential for) high level of interpretability

Limited interpretability

Neural Networks

Neural Networks

- Each neuron contain a value, its "activation"
	- The values in the input are the pixel values
	- The value at the last output layer represents the likelihood of that digit
	- f is an activation function (e.g. sigmoid)

weights: 784x4+4x4+4x10 # biases: 4 + 4 + 10 Total parameters: 3,210

26th of November 2024 DTU Compute, Technical University of Denmark

"Cost" of the difference:

Neural Networks

Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist $((trainX, trainY), (testX, testY)) = \text{mnist.load data}()$

Vectorize

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1)) testX = testX.reshape((testX.shape[0], 28 * 28 * 1)) # scale data to the range of [0, 1] trainX = trainX.astype("float32") / 255.0 testX = testX.astype("float32") / 255.0

Define model

 $model = Sequential()$ model.add(Dense(4, input shape=(784,), activation="sigmoid")) model.add(Dense(4, activation="sigmoid")) model.add(Dense(10, activation="softmax"))

Train model

model.compile(loss="categorical crossentropy", $optimizer=SGD(0.01)$, metrics=["accuracy"])

model.fit(trainX, trainY, validation_data=(testX, testY), epochs=100, batch size=128)

Neural Networks

Load and prepare data

from tensorflow.keras.datasets import mnist $((trainX, trainY), (testX, testY)) = \n *mnist.load_data()*$

Vectorize

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1)) testX = testX.reshape((testX.shape[0], 28 * 28 * 1)) # scale data to the range of [0, 1] trainX = trainX.astype("float32") / 255.0 testX = testX.astype("float32") / 255.0

Define model

 $model = Sequential()$ model.add(Dense(4, input shape=(784,), activation="sigmoid")) model.add(Dense(4, activation="sigmoid")) model.add(Dense(10, activation="softmax"))

Train model

model.compile(loss="categorical crossentropy", $optimizer=SGD(0.01)$, metrics=["accuracy"])

model.fit(

trainX, trainY, validation_data=(testX, testY), epochs=100, batch size=128)

Motivation: Artifacts in umaps result in loss of quantitative accuracy

μ-map

26th of November 2024 DTU Compute, Technical University of Denmark ⁷⁵ Artifacts can not be predicted just by knowing the amount of metal

Artifacts can be connected artificially with sinuses or background

Outer holes = Signal voids breaching the anatomical surface

Inner holes = Signal voids within the anatomical surface

Artifacts can be separated from actual signal voids

How?

By the offset to a set of landmarks in 2D

78

Procrustes analysis:

Transformation

 $X_i \oplus r_i X_i H_i + T_i$

- *ρ* : scaling H : rotation
- T : translation

Minimization problem

$$
\left\| \mathop{\bigg|}\limits_{i
$$

Landmarks on 7 patients

Mode 1: Mouth, horizontal & cerebellum

Mode 2: Chin

Mode 3: Aterior-posterior landmarks in respect to each other & cerebellum

Mean patches from 5 patients **81** and 81

26th of November 2024 DTU Compute, Technical University of Denmark

MRI

New patient MRI

blur

- 1. Blur MRI images from "atlas" patient and new patient
- 2. Align the two using rigid transformation
- 3. Apply the same transformation to the shape of the atlas patient

Cootes & Taylor, Comp. Vis. and Img. Under. 1995

Active Shape Models – and more

Offset to mean shape: $d\mathbf{x} = (dx_1,...,dx_n)$

Projected to legal shape space: d**y=**ϕTd**x**

5 patients 650 non-artifact pixels 210 artifact pixels

Offsets to a landmark in the training set

❑ Classify using kNN

- For each pixel in a signal void
	- Find the offset to each landmark
		- Find 5-Nearest-Neighbors
		- Majority of neighbor-labels decides the landmark
	- Majority of landmark-labels decides the class

x-offset

 $\left.\rule{0.3cm}{0.15mm}\right.$

-offset

Active Contours: Chan Vese

- "Outer holes" cannot be corrected easily by MRI
- NAC-PET holds information about outer contour
- … but contains noise and needs to be delineated

 $F(\phi) \approx 0$ $F(-\phi) \approx 0$

 $F(\phi) \approx 0$

 $\overline{F(-\phi)} > 0$

Active Contours: Chan Vese

What did you learn today

- Many of the topics taught during this course can be useful for image analysis at an imaging department in a hospital
- Topics like preprocessing are always used before any imaging project
- Registration are used to align scans within a patient examination, and across examinations
- Simple tools are often wanted as it
	- Works well with limited data
	- Strengthens the explainability of a method

