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Scanner Data storage

Physician

Data acquisition and processing in an imaging department

Overview
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Patient Image analysis

Registration,

Detection,

Classification,

etc.
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Preprocessing

4

• Data compression

• Intensity normalization

• Intensity augmentation

• Intensity mapping

• Filtering
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Data compression
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Image Label

10

5
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0
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1024 x 10241024 x 1024

Task:

Store using fewest number of possitive digits
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Data compression
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Image Label

2

1
3

3
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1024 x 10241024 x 1024

/ 5

Task:

Store using fewest number of possitive digits
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Data compression
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Image Label

4

3
5

5

0 0

1

1024 x 10241024 x 1024

+2

/ 5

Task:

Store using fewest number of possitive digits
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Data compression

• Representation of outlines 
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[x1,x2,x3,…,y1,y2,y3,…,yn]

(x1, y1) (x9, y9)

[x1,x2,x3,x4,y1,y2,y3,y4]

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)
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Data compression
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• CT values are usually defined in [-1024;3071] HU

• Values are usually stored as unsigned integer

• Large part of the volume is air (-1024 HU)

10 HU

300 HU

-1024 HU

2D 

Pixel Array

Header
Slope (a): 1

Intercept (b): -1024

Stored values:

[0,0,0,1034,…,1324,0,0]

Read values:

[-1024,-1024,-1024,10,…,300,-1024,-1024]

𝐹 𝑥 = 𝑎𝑥 + 𝑏
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Quiz 1

• An image containing values ranging from 0 to 52,427 needs to be stored in DICOM format

• The DICOM file has to be in the type SHORT (max value = 32,767) 

• What can the slope and intercept be?

– Slope 1.4 and intercept 1

– Slope 1.6 and intercept 0

– Slope 1 and intercept -19,660
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menti.com

Code: 1339 2939
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Intensity normalization

• Conventional MRI intensites (T1-w, T2-w, PD, FLAIR) are acquired in arbitrary units

11

Subject A Subject B Subject A Subject B

Standardization

Quantification analysis:

Incomparable results

Quantification analysis:

Comparable results

70 200 0.58 0.61
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Intensity normalization

12

Standardization

Some available mapping functions:

• Min-max scaling

• Histogram stretching

• Z-normalization

Be aware when high intensity areas are present!

Z-normalization is the de-facto standard for most MRI-based preprocessing

What about images with non-arbitrary units (CT, PET)?

𝑔 𝑥, 𝑦 =
𝑓(𝑥, 𝑦) − 𝜇

𝜎

𝑔 𝑥, 𝑦 =
𝑣𝑚𝑎𝑥,𝑑 − 𝑣𝑚𝑖𝑛,𝑑

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
(𝑓 𝑥, 𝑦 − 𝑣𝑚𝑖𝑛) + 𝑣𝑚𝑖𝑛,𝑑

𝑔 𝑥, 𝑦 =
𝑓(𝑥, 𝑦) − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
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Intensity normalization

13

Normalize relative to a reference region before scaling

Examples:

• Background region in brain 

• Liver region in whole-body imaging
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Intensity mapping

14

[-1024;3071] HU

[-150;250] HU

[-150;250] HU

[-1000;0] HU

𝑔 𝑥, 𝑦 =
𝑓 𝑥, 𝑦 − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
∗ (𝑣𝑚𝑎𝑥,𝑑 − 𝑣𝑚𝑖𝑛,𝑑) + 𝑣𝑚𝑖𝑛,𝑑

E.g. by histogram stretching or intensity rescaling:

Each image is mapped from 𝑣𝑚𝑖𝑛  and 𝑣𝑚𝑎𝑥 
to 𝑣𝑚𝑖𝑛,𝑑  and 𝑣𝑚𝑎𝑥,𝑑  (often 0-255) using:

followed by clamping values outside the range
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Intensity normalization

15

ML 

model

a.u.

Standardization

Z-normalized [0-1]

HUHU

Standardization

[0-1]

𝐹(𝑥) =
𝑥 − 𝑎

𝑏

Inverse

𝐹−1(𝑥) = 𝑥 ∗ 𝑏 + 𝑎
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Intensity normalization

ML 

model

a.u.

Standardization

Z-normalized

HU

Standardization

[0-1]

𝐹(𝑥) =
𝑥 − 𝑎

𝑏

L1 loss = σ𝑖=0
𝑛 |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 |

Min-max standardization 

with a=-1000 b=2000

Min-max Stretched

500 vs 600 HU 0.05 0.0105

-50 vs 50 HU 0.05 0.3

Stretched with intervals

[-1000, -100, 100, 1000]
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Augmentation

17

ML 

model

a.u.

Standardization

Augmentation

Z-normalized



DTU Compute, Technical University of Denmark26th of November 2024

Quiz 2

18

• A model is trained to predict the percieved age of a patients’ brain given an MRI

• The model was trained with data containing ages of 18 to 99, so was scaled using: 

where (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) = (18, 99) and (𝑣𝑚𝑖𝑛,𝑑, 𝑣𝑚𝑎𝑥,𝑑) = (0, 1) 

• The model predict 0.78 for a given MRI. What is the predicted age (in years) of the patient?

• 63

• 70 

• 81

• 95

𝑔 𝑥, 𝑦 =
𝑓 𝑥, 𝑦 − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
∗ (𝑣𝑚𝑎𝑥,𝑑 − 𝑣𝑚𝑖𝑛,𝑑) + 𝑣𝑚𝑖𝑛,𝑑
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Segmentation of air regions

19

UTETE1 UTETE2 • Two MR images acquired with different echo times 

TE1 << TE2

• Different intensities are expected in bone 

but not in air and tissue
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Segmentation of air regions

20

UTETE1 UTETE2

Frequency

MR intensity

Frequency

MR intensity

TE1

TE2
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Segmentation of air regions

21

Frequency

MR intensity

Frequency

MR intensity

TE1

TE2

Normalized Joint histogram
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Intensity mapping

22

UTETE1 UTETE2 R2
* CT

𝑅2
∗ =

ln 𝑈𝑇𝐸𝑇𝐸1 − ln(𝑈𝑇𝐸𝑇𝐸2)

𝑇𝐸2 − 𝑇𝐸1
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Intensity mapping

23
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Intensity mapping

24

-15

15

0

7.5

-7.5

%

16

0

8

kBq/mL

0.2

0.1

0

cm-1

Scaled signalThresholded signalCT % difference w/

Thresholded signal

% difference w/

Scaled signal
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Registration

25

• Interpolation

• Intra subject registration

– Same session

– Between sessions

• Inter subject registration
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Interpolation

26

0.5x0.5x0.6 mm3 0.5x0.5x4.4 mm3

Image interpolation → Trilinear (or similar)

Label interpolation → Nearest Neighbour

Nearest neighbour ensures integer (e.g. 0 and 1) values
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Quiz 3

• In a 4-connectivity setting, what would the color of 

the white center pixel be assigned when using 

nearest neighbour interpolation?

– Green

– Blue

– Red

27
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Registration

• Intra subject

28

Between two timepointsBetween two similar modalities Between two different modalities

Different transformations:

Translation

Rotation

Scaling

Sheering

Translation and rotation are used for intra subject registration

Scaling mainly used for inter subject registration
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Registration

29

Global step: Search for overlap at low-to-high resolution

8mm 4mm 2mm

Local optimization step:

Course search grid to find

optimal translation and rotation
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Registration

30

Between two timepoints Between two similar modalities Between two different modalities

Target Moving Target Moving Target Moving

Brain extraction After registrationBefore registration

Similar modality

cost function:

Least squares

Normalized correlation
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Registration

31

Between two timepoints Between two similar modalities Between two different modalities

Sagittal Coronal

After registrationBefore registration

Different modality 

cost-function:

Mutual information

Sagittal Coronal
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Design a motion-compensated PET/MRI system

32

~ 10-20 min ~ 0.5 - 3 min
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Part of the acquisition

Registration

33

• Intra-scan motion correction usually requires sensors

Wearable sensors External sensors
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Registration

34

Figure: https://doi.org/10.1016/j.media.2017.08.002
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Registration

35

• Goal is to obtain a synthetic CT based on a patient’s own MRI

𝑁𝐶𝐶𝑛 =
1

𝑁

𝐼𝑀𝑅𝐼 − 𝐼𝑀𝑅𝐼 , 𝐽𝑛
𝑀𝑅𝐼 − 𝐽𝑛

𝑀𝑅𝐼

𝜎 𝐼𝑀𝑅𝐼 𝜎(𝐽𝑛
𝑀𝑅𝐼)

Simplest solution:

Find best matching warped MRI

𝐼𝑀𝑅𝐼  is target MRI

𝐽𝑛
𝑀𝑅𝐼is warped atlas n

ҧ𝐼 is mean of I

𝜎 𝐼  is standard deviation of I

More complex solution:

1. For each voxel, extract patch 

and compute local NCC 

(LNCC)

2. Rank the patches based on 

their LNCC

3. Fuse the CT values based on 

their ranks 

(higher rank = higher weight)
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Registration

36

• Goal is to obtain a synthetic CT based on a patient’s own MRI

𝑁𝐶𝐶𝑛 =
1

𝑁

𝐼𝑀𝑅𝐼 − 𝐼𝑀𝑅𝐼 , 𝐽𝑛
𝑀𝑅𝐼 − 𝐽𝑛

𝑀𝑅𝐼

𝜎 𝐼𝑀𝑅𝐼 𝜎(𝐽𝑛
𝑀𝑅𝐼)

Simplest solution:

Find best matching warped MRI

𝐼𝑀𝑅𝐼  is target MRI

𝐽𝑛
𝑀𝑅𝐼is warped atlas n

ҧ𝐼 is mean of I

𝜎 𝐼  is standard deviation of I

More complex solution:

1. For each voxel, extract patch 

and compute local NCC 

(LNCC)

2. Rank the patches based on 

their LNCC

3. Fuse the CT values based on 

their ranks 

(higher rank = higher weight)

Single atlas LNCC approachActual CT

Actual MR

Difference to CT
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Detection

37

• Segmentation

• Detection

• Tracking
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Segmentation

38

Target Image

Atlas 1 Atlas N…

Fuse labels to final class (e.g. by majority voting) for each patch

Warp each atlas to target image

Segmentation result

• Label fusion
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Quiz 4

• The 10 estimates for a class label are found after registration. 

– [1, 5, 2, 1, 2, 5, 4, 5, 2, 2]

• Using majority voting, what is the final predicted class?

– Answers:

• 1

• 2

• 4

• 5

39
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Detection

• Determine the Callosal angle

• Steps

1. Align MRI to standard space to 

select standard center slice

2. Determine first row without 

brain tissue in center columns

3. Fit a line to brain tissue 

points for each side

4. Determine angle between lines

40
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Detection

41
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Tracking

42

• Tracking of objects over time to detect progression

Step 1

Register images

Baseline Follow-up

Step 2

Segment lesions

Step 3

Connected component analysis

1
2

3

45
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Tracking

43

Step 4

Global remapping

1
2

3

45

Overlapping clusters

New cluster

1
2

3

21
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Tracking

44

• Tracking of objects over time to detect progression

Baseline Follow-up

Invert transformation
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Classification (and more)

45

• Template matching

• Feature engineering

• Random Forest

• Active Shape Models

• Active Contours
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Template matching

47

𝑔 𝑥, 𝑦 = 

𝑗=−𝑅

𝑅



𝑖=−𝑅

𝑅

ℎ(𝑖, 𝑗) ∙ 𝑓(𝑥 + 𝑖, 𝑦 + 𝑗)

Examples of h:

Resulting gReference
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Feature engineering

48

What is relevant to know about this image to classify each voxel/pixel?

• Edges?

• Shapes?

Week #4, Filtering Week #5, Blob features
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Feature engineering – Local Binary Patterns

49

6 8 15

15 10 17

10 9 20

00111011 59

Read points Binary Decimal

0 0 1

1 0 1

1 0 1

Compare 

to center

0x27 + 0x26 + 1x25 + 1x24 + 1x23 + 0x22 + 1x21 + 1x20

Tunable parameters include radius (distance between center and points) and number of points on grid
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Quiz 5

• Given the read matrix, what is the calculated LBP value

– 163

– 167

– 171

– 180

50

6 4 6

15 5 4

10 9 3

Read matrix

6 8 15

15 10 17

10 9 20

00111011 59

Read points Binary Decimal

0 0 1

1 0 1

1 0 1

Compare 

to center

0x27 + 0x26 + 1x25 + 1x24 + 1x23 + 0x22 + 1x21 + 1x20

From previous slide:
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Quiz 5

• Given the read matrix, what is the calculated LBP value

– 163

– 167

– 171

– 180

51

6 4 6

15 5 4

10 9 3

Read matrix

1 0 1 0 0 1 1 1 = 128 + 32 + 4 + 2 + 1 = 167
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Feature engineering – Local Binary Patterns

52

30 20 35

28 10 41

15 37 45

1 1 1

1 0 1

1 1 1

11111111

255

Read points

Compare 

to center

Binary

Decimal
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Feature engineering

53

Normalized Blurred Gradient

magnitude

Spatial-x Spatial-y R2* LBP

How to we combine these into a voxel classification model?
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Which features are relevant for image classification?

54

Go pick up the 

golf ball
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Image features

55

Roundness

vs

Size (Largest diameter > 10 cm)

vs

Convex (yes or no)

vs

Color (is_yellow)

vs
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From features to decision trees 

56

is_round

yes

is_yellow

no

yes no

yes no

diameter>10cm

Available features:

• Roundness (is_round)

• Color (is_yellow)

• Size (diameter>10cm)

Rules:

• Yes means you go left

• Leaves cannot be empty
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Build your own decision tree

57

GROUP A GROUP B

HAS_FUR

EATS_MEAT

HAS_MANE

BUILDS_DAM

ATTACKS_HUMANS

HAS_TEETH

LIVES_IN_WATER
LIVES_IN_WATER

HAS_TEETH

Rules:

• Yes means you go left

• Leaves cannot be empty

(Birthdate is odd) (Birthdate is even)



DTU Compute, Technical University of Denmark26th of November 2024

Build your own decision tree

58

GROUP A GROUP B

HAS_FUR EATS_MEAT HAS_MANE

BUILDS_DAM ATTACKS_HUMANS

HAS_TEETH LIVES_IN_WATER

LIVES_IN_WATER HAS_TEETH

HAS_FUR

yes

HAS_MANE

no

yes no

BUILDS_DAM

yes

LIVES_IN_WATER

no

yes no
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FROM TREES TO A (RANDOM) FOREST
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Random Forest

60

[YES, YES, …   ]

[YES, NO, …   ]

…

…

[NO, YES, …   ]

[y][id]

[0]

[1]

[n]

[x0,     x1, …   ]

Observations (Training data)

Variables

Data points
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Random Forest

61

[YES, YES, …   ]

[YES, NO, …   ]

…

…

[NO, YES, …   ]

[y]

• Why random?

– Each tree sees a random subset of the variables

– Each tree sees a random subset of the data points with replacement (Bootstrap)

• Multiple trees make a forest

Tree1 Tree2

[id]

[3

 2

 3

 1

 6

 8]

[id]

[0

 2

 1

 3

 7

 5]

[id]

[2

 5

 5

 9

 2

 0]

[id]

[0]

[1]

[n]

Tree3

[x0, x4] [x5, x9] [x2, x6, x11]

Majority voting of result

[x0,     x1, …   ]

Observations (Training data)
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Feature engineering

62

Normalized Blurred Gradient

magnitude

Spatial-x Spatial-y R2* LBP

How to we combine these into a voxel classification model?

[0.65, 0.61, 0.5, 5, -10, 0.25, 231, …]
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Feature engineering

63

[0.65, 0.61, 0.5, 5, -10, 0.25, 231, …]

[0.45, 0.66, 0.4, 6, -12, 0.24, 251, …]

…

…

[0.87, 0.41, 0.1, 2, 25, 0.55, 131, …]

Repeat for all voxels:

[0.61, 0.59, 0.63, 0.5, 0.11, 0.25, 0.88, …]

[0.41, 0.65, 0.45, 0.6, 0.08, 0.24, 0.95, …]

…

…

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, …]

Normalize to 0-1 range

[0.00]

[0.89]

[0.45]

Reference value 

for each voxel
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Random Forest

64

[0.61, 0.59, 0.63, 0.5, 0.11, 0.25, 0.88, …]

[0.41, 0.65, 0.45, 0.6, 0.08, 0.24, 0.95, …]

…

…

[0.81, 0.38, 0.12, 0.2, 0.31, 0.55, 0.45, …]

[0.00]

[0.89]

[0.45]

[x0,     x1, …                                              ] [y]

x0 < 0.5

x1 < 0.5

0.89

0.45 0.00

Decision tree
• Multiple trees make a forest

• Why random?

– Each tree sees a random data sample with replacement (Bootstrap)

– Each tree sees a random subset of the variables

Tree1 Tree2

[id]

[3

 2

 3

 1

 6

 8]

[id]

[0

 2

 1

 3

 7

 5]

[id]

[2

 5

 5

 9

 2

 0]

[id]

[0]

[1]

[n]

Tree3

[x0, x4] [x5, x9] [x2, x6, x11]

New datapoint: [0.65, 0.33, …, ]

0.65

0.61

0.78

Mean of results (Aggregating): ത𝑦 =
1

𝑛
σ𝑖 ഥ𝑦𝑖 =

1

3
0.65 + 0.61 + 0.78 = 0.68

X

X
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Quiz 6

• Using the 3 trained trees below, what is the predicted value after aggregating the output?

• Input data: [0.49, 0.56, 0.99, 0.32]

• Options:

– 0.45

– 0.50

– 0.80

– 0.48

65

x0 < 0.5

x3 < 0.5

0.56

0.45 0.00

x1 < 0.5

x3 < 0.5

0.49 0.80

x3 < 0.5

x0 < 0.5

0.66

0.45 0.850.55 0.20

x2 < 0.5
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Quiz 6

• Using the 3 trained trees below, what is the predicted value after aggregating the output?

• Input data: [0.49, 0.56, 0.99, 0.32]

• Options:

– 0.45

– 0.50

– 0.80

– 0.48

66

x0 < 0.5

x3 < 0.5

0.56

0.45 0.00

x1 < 0.5

x3 < 0.5

0.49 0.80

x3 < 0.5

x0 < 0.5

0.66

0.45 0.850.55 0.20

x2 < 0.5

(0.56 + 0.49 + 0.45)/3 = 0.5
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Random forest

67

• Example output:

– 100 trees

– n=25 patients

– Features from

• Original and filtered images

• Edge enhanced

• R2*

• LBP

• Trained with RandomForestRegressor 

from sklearn
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Increasing complexity..

68

x0 < 0.5

x3 < 0.5

0.56

0.45 0.00

(Potential for) high level of interpretability

Random Forest

.

.

.

Limited interpretability

Neural network
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Neural Networks

69

0

1

2

3

4

5

6

7

8

9

28 x 28 = 784

.

.

.
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• Each neuron contain a value, its ”activation”

– The values in the input are the pixel values

– The value at the last output layer 

represents the likelihood of that digit

– f is an activation function (e.g. sigmoid) 

w0

w1

wn

a0

a1

an

𝑎0
(1)

= 𝑓(𝑤0𝑎0 + 𝑤1𝑎1 + ⋯ + 𝑤𝑛𝑎𝑛 − 𝑏𝑖𝑎𝑠)

# weights: 784x4+4x4+4x10

# biases: 4 + 4 + 10

Total parameters: 3,210
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”Cost” of the difference:

( ത𝑦 − 𝑦)2

0

0

0

0

0

1

0

0

0

0

ത𝑦 𝑦

𝑓(𝑤0𝑎0 + 𝑤1𝑎1 + ⋯ + 𝑤𝑛𝑎𝑛 − 𝑏𝑖𝑎𝑠)
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Load and prepare data

Define model

Train model
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Load and prepare data

Define model

Train model
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NAC-PETMR AC-PETMRμ-map

Motivation: Artifacts in umaps result in loss of quantitative accuracy

AC-PETMR

μ-map
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Artifact

Artifacts can be connected artificially with sinuses or background

Maxillary Sinus
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Outer holes = Signal voids breaching the anatomical surface

Inner holes = Signal voids within the anatomical surface
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Artifacts can be separated from actual signal voids

How?

By the offset to a set of landmarks in 2D
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riXiHi +Ti( ) - rsXsHs +Ts( )
i<s

s

å
F

2

Xi ® riXiHi +Ti

Procrustes analysis:

Transformation

Minimization problem

ρ : scaling

H : rotation

T : translation

Landmarks on 7 patients



DTU Compute, Technical University of Denmark26th of November 2024

Active Shape Models – and more

80

Mode 1: Mouth, horizontal & cerebellum

Mode 2: Chin

Mode 3: Aterior-posterior landmarks in respect to each other 

& cerebellum
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MRI

New patient MRI

blur

Align

1. Blur MRI images from “atlas”
patient and new patient

2. Align the two using rigid transformation

3. Apply the same transformation to 
the shape of the atlas patient
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Cootes & Taylor, Comp. Vis. and Img. Under. 1995

dx1

Offset to 

mean shape:

dx=(dx1,…,dxn)

Projected to legal 

shape space:

dy=ϕTdx



DTU Compute, Technical University of Denmark26th of November 2024

Active Shape Models – and more

84



DTU Compute, Technical University of Denmark26th of November 2024

Active Shape Models – and more

85

5 patients

650 non-artifact pixels

210 artifact pixels
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❑ Classify using kNN

▪ For each pixel in a signal void

▪ Find the offset to each landmark

▪ Find 5-Nearest-Neighbors

▪ Majority of neighbor-labels decides the 
landmark

▪ Majority of landmark-labels decides the class

Classification:

Classify each pixel using kNN and a training set

x-offset

y
-o

ff
s
e
t

Offsets to a landmark in 

the training set
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• ”Outer holes” cannot be corrected easily by MRI

• NAC-PET holds information about outer contour

• … but contains noise and needs to be delineated
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𝐸𝐶𝑉 𝜙, 𝑐𝑖 , 𝑐𝑜 =  𝜇 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ 𝜙 + 𝜆𝑖 
Ω

𝐻(𝜙) 𝑢0 − 𝑐𝑖
2+ 𝜆𝑜 

Ω
𝐻(−𝜙) 𝑢0 − 𝑐𝑜

2

Length of contour NAC-PET Mean of areas

Inside contour Outside contour
F(𝜙) > 0

F(-𝜙) ≈ 0

F(𝜙) ≈ 0

F(-𝜙) > 0

F(𝜙) ≈ 0

F(-𝜙) ≈ 0
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Real Simulated Corrected

Real Simulated Corrected

Simulated Corrected
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What did you learn today

• Many of the topics taught during this course can be useful for image analysis at an imaging 

department in a hospital

• Topics like preprocessing are always used before any imaging project

• Registration are used to align scans within a patient examination, and across examinations

• Simple tools are often wanted as it

– Works well with limited data

– Strengthens the explainability of a method 

91

Scanner Data storage

Physician
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