Not included

A 12 x 12 image (0-based (x,y)-coordinate system with origin in upper left corner) is filled with the following *binary run-length code*:

[3; (4,5)], [4; (3,7)], [5; (4,7)], [6; (5,8)], [7; (6,7)]

Then a *morphological opening* is performed with SE1 from Figure 1. How many foreground pixels are there in the resulting image?

1.7

- 2. 11
- 3. 19
- 4. 13
- 5.16
- 6. Do not know

Figur 1: Left: SE1, Right: SE2. White pixels are foreground (1) and black pixels are background (0). The center is marked with a black cross.

Opgave 16.3

You have a camera with a *focal length* of 45 mm and a CCD chip of size 8 mm x 6 mm. It takes images with a size of 3200 x 2400 pixels. It can be assumed that b = f. From a distance of 1 meter, you have taken a sharp image of a completely circular mole, with a diameter of 1 cm. In the image a threshold is applied such that only the mole is visible and the area of the mole in pixels is calculated. What is the area?

- 1. 23040 $pixels^2$
- 2. 25447 pixels^2
- 3. 17900 $pixels^2$
- 4. 19124 $pixels^2$
- 5. 21987 pixels^2
- 6. Do not know

Opgave 16.4

Not included

Opgave 16.5

Not included

A 5 x 5 image is filled with values, given by the gray level run length coding: 3, 120, 2, 110, 2, 120, 3, 110, 4, 95, 2, 110, 2, 100, 7, 80. The image has a 0-based (x,y)-coordinate system with origin in upper left corner. A median filtering is performed with a 3x3 filter kernel. What is the result in the pixel with coordinates (2,2)?

- $1.\ 100$
- $2.\ 120$
- 3.95
- 4.80
- $5.\ 110$
- 6. Do not know

Which set of BLOB features can be used to separate the 6 BLOBs in Figure 2.

Figur 2: 6 BLOBs

- 1. Area and bounding box ratio
- 2. compactness and circularity
- 3. bounding box ratio and circularity
- 4. Area and *compactness*
- 5. compactness and bounding box ratio
- 6. Do not know

The image as seen in Figure 3 is filtered with a 3x3 mean filter. Afterwards a gamma mapping is conducted with $\gamma = 1.15$. What is the result in the marked pixel?

- $1.\ 129$
- $2.\ 116$
- 3. 144
- 4. 123
- $5.\ 131$
- 6. Do not know

177	195	181	30	192	140
81	203	192	127	65	35
242	48	70	245	129	38
9	125	173	87	178	66
112	114	167	149	227	214
97	165	41	57	245	65

Figur 3: Grayscale image

A *template matching* is performed on the image in Figure 4(left) with a template image as seen in Figure 4 (right). In the pixel marked with a blue circle the *correlation* is 243387. What is the original pixel value in the pixel with a missing value?

- 1. 10
- 2.87
- 3.245
- 4.223
- $5.\ 198$
- 6. Do not know

177	195	181	30	192	140			
81	203	192	127	65	35			
242	48	70		129	38	208	233	71
9	125	173	87	178	66	231	161	139
112	114	167	149	227	214	-51	101	100
97	165	41	57	245	65	32	25	244

Figur 4: Left: Gray scale image. Right: Template

A *template matching* is performed on the image in Figure 4(right) with a template image as seen in Figure 4 (left). What is the *normalized cross correlation* in the pixel marked with a green circle?

- $1. \ 0.13$
- $2. \ 0.86$
- 3. 0.27
- $4. \ 0.77$
- 5. 0.55
- 6. Do not know

A BLOB analysis is conducted on the image in Figure 5. The largest and second largest BLOB is found with 4-connectivity and their combined area is calculated. It is:

- $1. \ 14$
- 2. 18
- 3. 5
- 4. 9
- 5.23
- 6. Do not know

Figur 5: Binary Image. White pixels is foreground (1) and black pixels are background (0).

A BLOB analysis is conducted on the image in Figure 5. The largest and the smallest BLOB is found with *8-connectivity* and both their *center of mass* is calculated. The euclidean distance between the two *center of mass* is calculated and is (in pixels):

- 1. 5.6
- 2.7.8
- 3. 9.2
- 4. 4.3
- 5.6.2
- 6. Do not know

A grey scale profile is made by sampling in an image along a line from the point (36.6, 50.5) to the point (123.6, 70.9). What is the coordinates for the point lying in the center of the sampled profile?

- 1. (79.8, 60.5)
- 2. (80.1, 60.7)
- 3. (81.2, 60.3)
- 4. (80.2, 61.2)
- 5. (80.5, 61.5)
- 6. Do not know

A grey scale profile is made by sampling in an image along a line from the point (36.6, 50.5) to the point (123.6, 70.9). Coordinates for the point in the center of the profile is calculated and the pixel value on the position is found using bilinear interpolation. The closest four pixels and their values are:

x	у	value
80	60	15
81	60	24
80	61	23
81	61	11

What is the interpolated value in the point?

1. 17

- 2. 20
- 3. 22
- 4. 18
- $5.\ 16$
- 6. Do not know

On the image in Figure 6 a *linear gray level mapping* is conducted in a way so that the new maximum value in the image is 160 and the new minimum value in the image is 50. Afterwards the image is filtered with a *3x3 maximum-rank filter*. What will the value of the marked pixel be?

- 1. 165
- $2.\ 158$
- $3.\ 134$
- 4. 187
- $5.\ 134$
- $6. \ Do \ not \ know$

208	71	244	202	173	180	
231	139	124	245	193	8	
32	244	204	167	189	71	
233	246	36	9	100	12	
161	40	108	217	167	25	
25	248	234	238	44	210	

Figur 6: Grayscale image

In order to do *pixel classification* an expert has chosen areas in an image consisting of air, soft tissue, kidney, liver and bone. The original image pixel values is reported as Hounsfield Units. The chosen pixel values is seen in Table 1. A *minimum distance classification* is conducted. A pixel with the value 46 in the image will be classified as?

- 1. air
- 2. soft tissue
- 3. kidney
- 4. liver
- 5. bone
- $6. \ do \ not \ know$

Tissue	pixel values
air	-945, -1032, -990
soft tissue	-50, -45, -67
$_{ m kidney}$	30,43,37
liver	50,54,58
bone	210,190,230

Tabel 1: Pixel values in the areas the expert chose.

In order to do *pixel classification* an expert has chosen areas in an image consisting of air, soft tissue, kidney, liver and bone. The original image pixel values is reported as Hounsfield Units. The chosen pixel values is seen in Table 1. A *minimum distance classification* is conducted. What is the *class range* for kidney?

- 1. [-31.2, -12.2]
- 2. [4.2, 47.3]
- 3. [15.3, 48.2]
- 4. [-8.7, 45.3]
- 5. [8.7, 45.2]
- 6. Do not know

In order to do *pixel classification* an expert has chosen areas in an image consisting of air, soft tissue, kidney, liver and bone. The original image pixel values is reported as Hounsfield Units. The chosen pixel values is seen in Table 1. A *parametric classification* is conducted. A pixel with the value 120 in the image will be classified as?

- 1. air
- 2. soft tissue
- 3. kidney
- 4. liver
- 5. bone
- 6. do not know

Not included

Not included

The points (x, y) = (2, 3) and (x, y) = (4, 2) is transformed first with the transformation matrix:

$$\left[\begin{array}{cc} 3 & 2\\ 4 & 1 \end{array}\right] \tag{1}$$

and afterwards with the transformation matrix:

$$\left[\begin{array}{cc} 2 & 1\\ 1 & 3 \end{array}\right] \tag{2}$$

Afterwards the midpoint between the two points is found. It is:

- 1. (32.0, 45.5)
- 2. (57.0, 25.5)
- 3. (42.5, 57.5)
- $4. \ (43.0, \, 34.5)$
- 5. (23.5, 64.5)
- 6. Do not know

The image in Figure 7 is filtered with a *Vertical Prewitt filter*. To avoid *the border problem* the image is extended with the value 0 (zero padding). What is the value of the marked pixel after filtration?

- 1. -2
- 2. -15
- 3. 23
- 4. 6
- 5. 32
- 6. Do not know

208	71	244	202	173	180
231	139	124	245	193	8
32	244	204	167	189	71
233	246	36	9	100	12
161	40	108	217	167	25
25	248	234	238	44	210

Figur 7: Grayscale image

A binary image is coded with a *binary chain coding*. A 0-based (x,y)-coordinate system with origo in the upper left corner is used:

(2,4)(00067651234)

On this image a BLOB analysis is conducted with 4-connectivity. How many BLOBS are found in the image?

1. 1

2. 2

3. 3

4. 4

5.5

6. Do not know

Using *dynamic programming* an *optimal path* from the top to the bottom of the image in Figur 8 is found. The combined *cost* for the found path is 188. What is the value of the pixel marked with a question mark?

- 1. 15
- 2.22
- 3.45
- 4. 19
- 5.34
- 6. Do not know

208	71	244	202	173	180	
231	139	45	245	193	37	
32	244	23	167	189	71	
233	246	36	9	100	12	
161	40	108	18	167	25	
25	248	?	238	44	210	

Figur 8: Grayscale image.

Using dynamic programming an optimal path from the top to the bottom of the image in Figur 8 is found. A Matlab matrix coordinate system is used. What is the value in the *accumulater* image on the coordinate (3,3):

- 1. 139
- $2.\ 110$
- $3.\ 155$
- 4. 144
- 5. 137
- 6. Do not know

Answers

Opgave	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Svar		5	2			1	4	5	3	4	2	5	2	2	2
Opgave	16	1	7	18	19	2	0	21	22	23	24	25			
Svar	4	4	4	5				3	1	3	2	1	7		