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Chapter 11

Colour

“It’s like this,” he said. “When you go after honey with a balloon, the great
thing is not to let the bees know you’re coming. Now, if you have a green balloon,
they might think you were only part of the tree, and not notice you, and if you
have a blue balloon, they might think you were only part of the sky, and not
notice you, and the question is: Which is most likely?”

A. A. Milne, from Winnie-The-Pooh

While it has, in general, not been stated explicitly, all the optical properties
and the radiometric quantities that we have discussed have been wavelength
dependent. The absorption coefficient represents an absorption spectrum, the
scattering coefficient a scattering spectrum, etc. If we sample radiance values
at different wavelengths in a rendering, we get a spectrum in each pixel. In
the following we will shortly explain how spectra translates to the trichromatic
colours often used in graphics (Sec. 11.1).

11.1 Trichromatic Representations

As mentioned in Section 2.2, it was originally proposed by Young [1802], and
later confirmed by Helmholtz [1867], that the eye has three receptors. It was
conjectured that all the colours we are able to see are a combination of three
principal colours: Red, green, and blue. While the real colour receptors in the
eyes do not precisely measure red, green, and blue, the Young-Helmholtz theory
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is essentially true. It is indeed possible to represent all visible colours by three
values. The CIE (Commission Internationale de l’Éclairage) has chosen a set
of standard conditions for measuring the human response to colour. Following
these standard conditions, different sets of curves have been measured which
translate a spectrum to a trichromatic representation.

Three curves have been made which translate a spectrum to a red, a green,
and a blue colour. They are referred to as the CIE RGB colour matching func-
tions. Described very concisely, the colour matching functions were determined
experimentally using three almost monochromatic light sources: r = 700 nm,
g = 546.1 nm, and b = 435.8 nm. An observer was shown a target colour and
then mixed the light from the three monochromatic sources in different intensi-
ties until the target colour was matched. To match all the colours, it turned out
that it was sometimes necessary to add some light directly to the target (instead
of in the mix of r, g, and b). This is interpreted as “negative” colour and it
is the reason why the RGB colour matching functions are sometimes negative.
To avoid negative colour values, the CIE also has three curves called the XYZ
colour matching functions. These have been chosen such that they represent all
the visible colours without being negative.

According to Stockman and Sharpe [2000], the “most secure and extensive of
the available color matching data” is the 10◦ RGB colour matching functions
of Stiles and Burche [1959]. The 10◦ mean that the size of the target colour is
ten degrees around the center of the observer’s visual field. A slightly corrected
version of Stiles and Burche’s RGB colour matching functions was included in
the work of Stockman and Sharpe [2000]. These are the curves I have used in
my implementations. Let us use the notation r̄(λ) for the red colour matching
function, ḡ(λ) for the green function, and b̄(λ) for the blue function. The way
of computing RGB colour values from a spectrum is

R =

∫
V

C(λ)r̄(λ) dλ

G =

∫
V

C(λ)ḡ(λ) dλ

B =

∫
V

C(λ)b̄(λ) dλ ,

where V denotes the interval of visible wavelengths (approximately from 380 nm
to 780 nm) and C(λ) is the spectrum that we want to translate to RGB.

Computer monitors do not emit light at the same almost monochromatic red,
green, and blue colours as the ones used to find the colour matching functions.
One way to show the difference between colour spaces is to plot them in a chro-
maticity diagram. A chromaticity diagram has an arced curve which corresponds
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Figure 11.1: The chromaticity diagram. The stippled triangle illustrates the
XYZ colour space. The grey triangle illustrates the RGB colour space. The black
triangle (which is not stippled) shows the gamut of a standard CRT display.

to all the monochromatic colours (see Figure 11.1). In-between the monochro-
matic colours, the diagram illustrates how spectra with a mix of monochromatic
colours form the colours that we see. A trichromatic colour space is a triangle in
the chromaticity diagram. The XYZ triangle encompass the entire chromaticity
diagram. This means that some XYZ colours are not visible. The RGB triangle
does not go outside the shape formed by the arc of monochromatic colours. This
is not surprising since it was made with almost monochromatic light sources.
Since the shape with all the visible colours is convex, any trichromatic colour
space defined by points inside the shape will require negative colour values to
capture all the visible colours. Figure 11.1 shows the difference between the
trichromatic colour values given by the RGB colour matching functions and by
the XYZ colour matching functions.

A CRT (Cathode Ray Tube) display is limited by the radiation capabilities of
the phosphors that it has been built with. An LCD (Liquid Crystal Display) is
limited by the radiation spectrum of the backlight it has been build with. In
general a display cannot show colours outside the triangle spanned by the three
primary colours that it uses. This triangle is called the gamut of the display.
Figure 11.1 shows the gamut of a standard CRT display. The CRT gamut and
the LCD gamut are fairly close to each other in most colour regions [Sharma
2002]. It should be noted that the shape and orientation of the typical display
gamut and the triangle defining the RGB colour space are quite similar in shape
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and orientation. This means that the RGB colour matching functions will, in
most cases, translate a spectrum to RGB colour values that make sense when
displayed on a computer screen. If one wishes to perfect the colours displayed on
a screen, the solution is to make a 3× 3 matrix which transforms XYZ or RGB
colour values to the gamut of the monitor. This requires knowledge of the gamut
and the monitor white point. How to find the transformation matrix, when this
information about the display has been obtained, is described by many authors.
See, for example, the recipe by Glassner [1995, Sec. 3.5].

If we choose to transform our trichromatic colour values to suit the gamut of a
display, it is important that we do not transform them until we have the final
pixel colours for an image. It is common practice in graphics to use trichromatic
colour values throughout a rendering. This means that absorption spectra,
scattering spectra, etc. are all translated to a trichromatic colour space. If we
use this approach instead of spectral rendering, it is incorrect to use monitor
specific colour values. The rendering should be done with CIE XYZ or CIE
RGB colour values. Adaption of the colours to a specific display is the final
step. If we use the RGB colour matching functions, for example, to translate an
absorption spectrum to RGB, we may run into problems with negative values.
Negative absorption does not make sense (in this context). Therefore the XYZ
colour matching functions are the safest choice. The disadvantage of the XYZ
colour space is that we have to translate the values to some other space before
we display them. This makes the XYZ colour space less convenient. In the
rendering programs made for this book, I have chosen to use either CIE RGB
rendering or full spectral rendering with conversion from spectrum to RGB
using the RGB colour matching functions. I have not run into negative colour
values. If negative colour values are encountered, they should be corrected using
a gamut mapping technique. Glassner [1995, Sec. 3.6] describes some of these
techniques and gives pointers to other references.
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