
170

Slightly revised excerpt from Frisvad, J. R., and Frisvad, R. R. Real-Time
Simulation of Global Illumination Using Direct Radiance Mapping. Master’s
Thesis, Department of Informatics and Mathematical Modelling, Technical
University of Denmark, Report No. IMM-THESIS-2004-78, 2004.

9.1 Transformation

In this section we will introduce how rotation, scaling, shearing, and trans-
lation matrices are constructed and we will introduce the applicabilities of
quaternions with respect to rotation.

The basic transformations: Translation, rotation, scaling, and shearing
are all so called affine transformations, meaning that parallel lines in the
transforming object are preserved. In rotation and translation the shape
of the object does not change, such transformations are called rigid body
transformations where both length and angles between points in the object
are preserved. The following text basically follows chapter 3 in [1].

The transformation of a point is simply the inner product of the matrix
and the point. The transformation matrix looks as follows:

X =


a00 a01 a02 tx
a10 a11 a12 ty
a20 a21 a22 tz
0 0 0 1



9.1 Transformation 171

Rotation, scaling, and shearing are done by altering different values in
the 3× 3 matrix:

A =

 a00 a01 a02
a10 a11 a12
a20 a21 a22


Scaling works by altering values in the diagonal of A, where a00 scales in

the x direction, a11 in the y direction, and a22 in the z direction. Translation
is done by changing tx, ty and tz. Each of the following matrices rotate an
entity of φ radians about one of the three axes:

Rx(φ) =


1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1



Ry(φ) =


cosφ 0 sinφ 0
0 1 0 0

− sinφ 0 cosφ 0
0 0 0 1



Rz(φ) =


cosφ − sinφ 0 0
sinφ cosφ 0 0
0 0 1 0
0 0 0 1


Figure 9.1 shows how a shearing affects an object by skewing it to one

side.

Figure 9.1: Shearing a box.

The shearing matrix is an identity matrix where one of the values that
are not in the diagonal of A is non-zero. When one of these values is altered

172

it corresponds to shearing in one particular direction (positive or negative)
on one particular axis.

Several transformations can be gathered in a single transformation ma-
trix. If an object should be rotated a bit according to a transformation
matrix R and then translated a bit according to a matrix T , the final trans-
formation matrix X is found by matrix multiplication of the translation
matrix and the rotation matrix:

X = TR

In this way more complex transformations can be created still using only
one transformation matrix. Notice that R is applied first, but is written
last. The order in which the matrices are multiplied has influence on the
final outcome. This should be taken into consideration when creating the
final transformation matrix.

The inverse transformation matrix is often useful, for example when
switching between coordinate systems. The general way for computing the
inverse of a matrix is given as explained in [1, p. 728] or any standard text
book on linear algebra (eg. [3]). Another very useful way of computing in-
verses is in the case where A is an orthogonal matrix, which is always the
case if the transformation is a concatenation of translations and rotations
only. The inverse of an orthogonal matrix is given as M−1 = MT , hence
the inverse of X if A is orthogonal is given as:

X−1
ortho =


a00 a10 a20 −(t · (a00, a10, a20))
a01 a11 a21 −(t · (a01, a11, a21))
a02 a12 a22 −(t · (a02, a12, a22))
0 0 0 1

 (9.1)

Quaternions

A compact and useful way to represent rotations is by use of a mathematical
conception called quaternions, introduced to computer graphics in [5]. We
will not describe the mathematical background of quaternions here, some
references are [1, 2, 4]. Rather we will shortly introduce their usage.

A quaternion is represented by a four-tuple q̂ = (qv, qw) = (qx, qy, qz, qw),
it should, however, not be confused with homogenous coordinates. Opera-
tions on quaternions are given as follows [1, p. 45]:

Multiplication q̂r̂ = (qv × rv + rwqv + qwrv, qwrw − qv · rv)
Addition q̂ + r̂ = (qv + rv, qw + rw)
Conjugate q̂∗ = (−qv, qw)
Norm n(q̂) = q2x + q2y + q2z + q2w
Identity î = (0, 1)

9.2 Animation and Motion Control 173

Suppose we have a point or a vector given in homogenous coordinates
p = (px, py, pz, pw). Let the quaternion p̂ be given as each component of p
inserted in p̂. Now, given a unit quaternion q̂ = (sinφuq, cosφ), where uq

is a vector representing an arbitrary axis, then:

p̂ 7→ q̂p̂q̂−1 =
q̂p̂q̂∗

n(q̂)
= q̂p̂q̂∗ (9.2)

rotates p̂ (which corresponds to p) around the axis uq by an angle 2φ [1].
Note that for a unit quaternion it is the case that q̂−1 = q̂∗. It can be shown
that any rotation can be obtained in this manner, see eg. [4]. This indicates
that quaternions are a compact and efficient way of representing rotation in
three-dimensional space.

The rotation given above, (9.2), is also called an adjoint map of p̂. It
can also be shown (eg. [4]) that this adjoint map has a corresponding 3× 3
rotation matrix, which is orthogonal. Since we have only made use of unit
quaternions in this project, we present the conversion from a unit quaternion
q̂ to a 3× 3 rotation matrix M q below. For the general formula we refer to
[4, 1, 5].

Aq =

 1− 2(q2y + q2z) 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 1− 2(q2x + q2z) 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) 1− 2(q2x + q2y)

 (9.3)

Another interesting feature of a quaternion is the ease by which the
rotation from one vector to another can be specified. Let s and t be two
unit vectors denoting a direction in space. A unit rotation axis is then given
as u = (s × t)/‖s × t‖. If 2φ denotes the angle between s and t, then
s · t = cos(2φ) and ‖s × t‖ = sin(2φ). “The quaternion that represents the
rotation from s to t is then q̂ = (sinφu, cosφ)” [1, p. 51].

A few trigonometric calculations show that the formula finding a unit
quaternion specifying the rotation between two vectors s and t is given as
[1]:

q̂ = (qv, qw) =

(
1√

2(1 + s · t)
(s× t),

√
2(1 + s · t)

2

)
(9.4)

This ends our presentation of transformations. In the following sections
we will give some examples of their use.

9.2 Animation and Motion Control

Building on the transformation matrices introduced in the previous section,
we can create a series of frames where different transformation matrices are

174

used in order to give an object the appearance of continuous movement.
Such a movement is referred to as animation. Animation can be a simple
movement, like a ball bouncing up and down, or it can be more complex, like
a person walking or a facial expressions. All movements over time qualify.

Animation is normally done in a modeling application by use of key
frames. Since the object is moving over time they need to be redrawn in
a slightly different position for each frame. Redrawing each moving object
for each frame would be an overwhelming task. With key frames only key
transforms of the objects moving are set, after that the application computes
the transformations of the frames in-between.

A simple calculation of object positions in-between key frames is by linear
interpolation. However to create realistic transformations it is sometimes
necessary that the movement is not linear. An example could be a ball
jumping up and down. If the ball is to follow the laws of physics, it will
move slower around its highest point and faster at set off and just before
hitting the ground. To create such effects we can use interpolation curves,
which can be found using quaternion curves, see [5, 2]. Movements like this
could also be simulated by a physics engine supporting gravity, which is why
a good physics engine can save a lot of animation time.

In Blender key frames are controlled in the action viewer, where all key
frames are placed. By this view key positions of objects can easily be moved
or copied to different frames. Blender also supports interpolation curves in
the Ipo view.

As we have seen in chapter 7, characters are often created from one mesh.
If characters are supposed to move body parts only (for example an arm or
a leg), just some of the mesh can be moved instead of the entire object.
For simulating walking, for instance, parts of the character mesh must be
moved in different directions at the same time. For purposes like this we
can create a skeleton-like mesh defining bones that can be attached to parts
of the mesh. Such a skeleton is called an armature. Whenever a bone in
the armature moves vertices attached to it will follow. In this way we can
modify only parts of the mesh influenced by the bones. An example of an
armature can be seen in figure 9.2.

There is difference between animations for a movie and animations for a
real-time application such as a game. Except for the fact that movie anima-
tions are much more detailed and spectacular, they are also predetermined.
This means that the artist can concentrate on particular movements only.
In a game, for example, movement of objects most often depends on how the
user interacts with the scene. The fact that the exact movement of objects
in a real-time application is unknown, means that animations must be split
up into smaller pieces, each containing movement we know will be useful in
many situations. Moreover animations like these must be able to follow each
other in a fluent manner.

Small animation snippets, like those described above, are called cycles.

9.3 Interactive Control 175

Figure 9.2: Armature of the male character in the cave scene. Notice how the mesh
follows the bones.

In a game with a character controlled by a user, cycles such as a walk cycle
or a hit cycle could be useful. In the example of a walk cycle the animation
snippet must be able to ‘re-cycle’, meaning that if several walk cycles follow
one another, they will appear as if the character just kept walking.

To have a moving light source in our cave scene the character shown in
figure 9.2 is supposed to walk about with a lantern, a walk cycle was created
for this purpose and an idle cycle. Unfortunately there has not been time
to export these animations to our own application. In order to show that
a scene is truly dynamic, we must also be able to alter it dynamically. In
real-time applications this usually happens by moving things around in the
scene using some sort of input device (mouse, keyboard, etc.). Interactive
control is the subject of the next section.

9.3 Interactive Control

In many real-time 3D applications a simple virtual track ball is connected
to a mouse input device and used for camera navigation. This is also the

176

case for the application implemented during this project. The track ball we
use was originally distributed during the DTU “Computer Graphics” course
(02561). During this project we have modified the track ball from time to
time and we have particularly adapted it to work for navigation of a chosen
object (according to the current camera view) as well as it works for camera
navigation. In the following we will first describe how the track ball works
for interactive camera control, and second we will describe our expansion of
it to include interactive object control.

The track ball is initialized by a center L around which the camera should
rotate, and a distance zeye which specifies how far away along the z-axis the
eye point, or camera, should be placed. Most often the center is defined as
the center of the scene in which the track ball is placed or the center of a
particular object in the scene.

Internally the track ball has a translation vector t = (tx, ty, tz) which is
applied in view space, meaning that altering (tx, ty) results in a pan motion
of the camera, while altering tz results in a zoom motion. Pan motion is
described by mouse motion when the right mouse button is down. Zoom
is described by the mouse moving forwards or backwards when the middle
mouse button is down.

The basis of the view space coordinate system is given by the current
rotation of the camera. This rotation is specified by a quaternion q̂rot. Mov-
ing the mouse while the left button is down will each frame provide a new
mouse position to the track ball. This mouse position is projected to the
sphere representing the virtual track ball. The sphere (or ball) is located at
the center of the scene in view space, that is, the position the camera will
always be pointing at. The new position found on the sphere will specify a
new viewing direction v2. Suppose the previous viewing direction was stored
as v1, then the quaternion q̂inc specifying the rotation from v1 to v2 is given
by (9.4).

As described in section 5.1, eye point E, ‘look-at’ point L, and up vector
vup are sufficient to describe the camera orientation. If we choose the default
orthonormal basis for the camera orientation (ex, ey, ez), the camera eye
point, ‘look-at’ point, and up vector are given as:

v̂up = q̂rotêyq̂
∗
rot

L̂ = tyv̂up + txq̂rotêxq̂
∗
rot

Ê = q̂rot((zeye + tz)êz)q̂
∗
rot + L̂

where each resulting quaternion corresponds to a vector or a point in ho-
mogenous coordinates.

Now, all we need to do in order to rotate the camera incrementally ac-
cording to the mouse motion, is to calculate q̂rot := q̂rotq̂inc for each frame.
We can even let the camera spin according to a previous motion after the

9.3 Interactive Control 177

left mouse button has been released by storing the incremental quaternion
q̂inc. The spin stops when q̂inc is reset to quaternion identity.

The extension for this track ball is to freeze the camera when the user
picks an object (eg. by pressing ‘p’ when the mouse is located over an object),
and then let the mouse control the selected object instead of the camera.
What we want to specify with the mouse is the modeling transform of the
selected object.

In order to move an object intuitively with the mouse, the motion should
be controlled in view space, since this is the space where the user works. The
task is now to find the modeling transform in view space.

When the track ball is frozen we store the old view transformation matrix
specified by E, L, and vup (how to find the matrix from these three is
described in section 5.1). If we let Mview denote the view transform, then a
transformation X carried out in view space is given in world space as:

Xworld = M−1
viewXviewMview (9.5)

Luckily the view space transformation consist of translation and rotation
of the camera only, therefore we can find M−1

view using (9.1).
Setting the center of the track ball to the center of the object in world

space Cworld, we can specify the translation of the object in view space Tview

according to pan and zoom of the track ball:

Tview =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


where pan becomes moving the object parallel to the view plane and zoom
becomes moving the object along the direction from the current camera
position to the object center. This results in a quite intuitive translation
of the object according to mouse movement. The next step is to rotate the
object.

In order to rotate the object intuitively in view space we must first move
it to the origin of the view space coordinate system. Having the center of
the object in world space coordinates Cworld, we can transform it to view
space coordinates as follows:

Cview = MviewCworld

The translation is then simple because the origin of the view space coor-
dinate system is now in (0, 0, 0) relative to Cview. Translation of the object
to the origin of view space is:

Tview,−C =


1 0 0 −Cview,x

0 1 0 −Cview,y

0 0 1 −Cview,z

0 0 0 1



178

and translation back to the previous object position is:

Tview,C =


1 0 0 Cview,x

0 1 0 Cview,y

0 0 1 Cview,z

0 0 0 1


Since we are looking at the object along the z-axis in view space, the local

coordinate system around which we want to rotate the object will have a z-
axis pointing in the opposite direction. If the object was positioned exactly
in the ‘look-at’ point, the basis of the object coordinate system would be
exactly opposite the basis of the view space coordinate system. Therefore,
when we rotate the track ball, a reasonable approximation to a rotation
of the selected object instead of the camera is given in view space as the
conversion of q̂−1

rot = q̂∗rot to a rotation matrix M q∗rot according to (9.3).
The rotation should as mentioned be performed at the origin of view

space. The final transformation of the object in view space is, therefore,
given as:

Xview = TviewTview,CM q∗rotTview,−C (9.6)

Inserting (9.6) in (9.5) results in the transform of the object in world
space. If the object had no modeling transform to begin with. We can let
Xworld specify the new modeling transform of the object. For this project we
will always assume that the object has no other modeling transform when
this track ball motion control is applied.

This chapter has introductorily shown the impact of interaction and an-
imation on real-time graphics. In the following chapter we will give a brief
tutorial on Blender modeling, since one part of this project has been to show
the work flow from modeling to rendering.

Bibliography

[1] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering. A K
Peters, Natick, Massachusetts, second edition, 2002.

[2] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, interpo-
lation and animation. Technical Report DIKU-TR-98/5, Department of
Computer Science, University of Copenhagen, July 1998.

[3] Jens Eising. Lineær algebra. Institut for Matematik, Danmarks Tekniske
Universitet, 1997.

[4] Jens Gravesen. Differential Geometry and Design of Shape and Motion.
Department of Mathematics, Technical University of Denmark, Novem-
ber 2002. Lecture notes for 01243.

[5] Ken Shoemake. Animating rotation with quaternion curves. Computer
Graphics (SIGGRAPH ’85 Proceedings), pages 245–254, July 1985.

