Nearest Neighbor and Locality-Sensitive
Hashing

* Nearest Neighbor

» Set Similarity

- Locality-Sensitive Hashing
* Document Similarity

Philip Bille

Nearest Neighbor and Locality-Sensitive
Hashing

* Nearest Neighbor

Nearest Neighlbor

* Nearest Neighbor.
* Preprocess a collection of high-dimensional vectors V = V4, Vo, ..., Vi to support
« NN(S): return all S; € S such that sim(S, Si) = threshold t
« Applications.
- Classification
« Search
* Find similar items

« Recommendation systems

Nearest Neighlbor

- Nearest Neighbor (Set version).
« Preprocess a collection of sets S =S4, Sy, ..., Sn to support
« NN(S): return all S; € S such that sim(S, Sj)) > t

Nearest Neighbor and Locality-Sensitive
Hashing

» Set Similarity

Jaccard Similarity

SNT
JS, T) = | |

|ISUT]|

Minhashing

 Pick a hash function f that maps elements to distinct integers.
« minhash h(S) = min hash on elements in S.

® ©

o~

Pei(S) = h(TY] = 2L _ sy

|ISuUT]|

Set Signatures

- Set signature.
* Pick k hash functions f4,fo,...,fk iIndependently
« = k minhashes h1, ho,..., hk

* sig(S) = [h1(S), h2(S), ..., hk(S)]

 Jaccard similarity estimation.
- J(S,T) = (#equal pairs in sig(S) and sig(T)) / k

Nearest Neighlbor

« Data structure. Sy S, Sh
- Signaturematrix M h hi(S1) | hi(S2) h1(Sn)
ho h2(S1) ha2(S2) ha(Sn)
hi
« NN(S):

- Compute sig(S).

« Compare sig(S) with sig(S1),...,sig(Sk) using Jaccard estimation. Return all sets
with similarity estimation > t.

Nearest Neighbor and Locality-Sensitive
Hashing

- Locality-Sensitive Hashing

Locality-Sensitive Hashing

* |ldea.
- Filter all but a few candidates.
- Check candidates using set signature similarity estimation.
 (Optionally compute exact Jaccard similarity for candidates).

+ Goal.
- Balance false positives and false negatives
- false positives = sets with similarity < t that become candidates
- false negatives = sets with similarity > t that do not become candidates.

Locality-Sensitive Hashing

F rOws

M

+ Partition signature matrix M into b bands of r rows.

- Banding.

- Store a dictionary for each band.

Locality-Sensitive Hashing

S M
r rows
b=5

- Partition sig(S) into bands and lookup in corresponding dictionary.

* NN(S):
« Construct sig(S)

« Make S; a candidate if it matches on some band with S.

Locality-Sensitive Hashing

- Analysis of banding. Suppose S and Si have similarity s. What is probability that S
becomes a candidate?

* Probability identical on 1 row =s
* Probability identical on 1 band = s’
* Probability at least 1 row in a band is not identical =1 - s’
+ Probability no band is identical = (1-sr)°
« Probability at least 1 band is identical = 1 - (1-s1)b

S

‘|' I rows

Locality-Sensitive Hashing

s 1—(1—-s")°
2 .006 T
3 .047
4 186 Probability
b 470 of becoming
6 .802 a candidate
7975
8 .9996

b=20,r=5 n=br=100

0 Jaccard similarity

—e
of documents

» Choosing b andr.
- Threshold: similarity where probability of becoming a candidate is > 1/2
« Threshold = (1/b)1r

Nearest Neighbor and Locality-Sensitive
Hashing

* Document Similarity

ocuments as Sets

- Shingles.
« "l used to think | was indecisive, but now I'm not too sure.”
® [IIIII, Ilusedll, "tO"], [Ilusedll, "tO", Ilthinkll], [Ilthinkll, IIIII, Ilwasll]

- Document = set of shingles.

