
Massively Parallel Computation

Philip Bille

• Computation.

• Read and write in storage

• Arithmetic and boolean operations

• Control-flow (if-then-else, while-do, ..)

• Scalability.

• Massive data.

• Efficiency constraints.

• Limited resources.

Sequential Computation

CPU

001111

001010

001011

111001

110010

101011

000000

110100

001111

001111

111011

101011

110010

111111

000000

101101

• Massively parallel computation.

• Lots of sequential processors.

• Parallelism.

• Communication.

• Failures and error recovery.

• Deadlock and race conditions

• Predictability

• Implementation

Massively Parallel Computation

MapReduce

• “MapReduce is a programming model and an associated implementation for
processing and generating large data sets with a parallel, distributed algorithm on a
cluster.” — Wikipedia.

MapReduce

• Dataflow.

• Split. Partition data into segments and distribute to different machines.

• Map. Map data items to list of <key, value> pairs.

• Shuffle. Group data with the same key and send to same machine.

• Reduce. Takes list of values with the same key <key, [value1, ..., valuek]> and

outputs list of new data items.

• You only write map and reduce function.

• Goals.

• Few rounds, maximum parallelism.

• Work distribution.

• Small total work.

MapReduce

MapReduce

splitting mapping shuffling reducinginput output

map(data item) → list of <key, value> pairs

reduce(key, [value1, value2, ..., valuek]) → list of new items

• Input.

• Document of words

• Output.

• Frequency of each word

• Document: “Deer Bear River Car Car River Deer Car Bear.”

• (Bear, 2), (Car, 3), (Deer, 2), (River, 2)

Word Counting

map(word) → <word, 1>

reduce(word, [1, 1, .., 1]) → <word, number of 1's>

splitting mapping shuffling reducinginput output

• Input.

• Set of documents

• Output.

• List of documents that contain each word.

• Document 1: “Deer Bear River Car Car River Deer Car Bear.”

• Document 2: "Deer Antilope Stream River Stream"

• (Bear, [1]), (Car, [1]), (Deer, [1,2]), (River, [1,2]), (Antilope, [2]), (Stream, [2])

Inverted Index

• Input.

• Friends lists

• Output.

• For pairs of friends, a list of common friends

Common Friends

A
B

D

C

E
A→ B C D

B→ A C D E

C→ A B D E

D→ A B C E

E→ B C D

(A B) → (C D)

(A C) → (B D)

(A D) → (B C

(B C) → (A D E)

(B D) → (A C E)

(B E) → (C D)

(C D) → (A B E)

(C E) → (B D

(D E) → (B C)

A→ B C D

B→ A C D E

C→ A B D E

D→ A B C E

E→ B C D

(A B) → B C D

(A C) → B C D

(A D) → B C D

(A B) → A C D E

(B C) → A C D E

(B D) → A C D E

(B E) → A C D E

(A C) → A B D E

(B C) → A B D E

(C D) → A B D E

(C E) → A B D E

(A D) → A B C E

(B D) → A B C E

(C D) → A B C E

(D E) → A B C E

(B E) → B C D

(C E) → B C D

(D E) → B C D

key value

Map

Map

Map

Map

Map

A
B

D

C

E

sorted keys

(A B) → B C D

(A C) → B C D

(A D) → B C D

(A B) → A C D E

(B C) → A C D E

(B D) → A C D E

(B E) → A C D E

(A C) → A B D E

(B C) → A B D E

(C D) → A B D E

(C E) → A B D E

(A D) → A B C E

(B D) → A B C E

(C D) → A B C E

(D E) → A B C E

(B E) → B C D

(C E) → B C D

(D E) → B C D

(A B) → (A C D E) (B C D)

(A C) → (A B D E) (B C D)

(A D) → (A B C E) (B C D)

(B C) → (A B D E) (A C D E)

(B D) → (A B C E) (A C D E)

(B E) → (A C D E) (B C D)

(C D) → (A B C E) (A B D E)

(C E) → (A B D E) (B C D)

(D E) → (A B C E) (B C D)

Group by key

A
B

D

C

E

(A B) → (A C D E) (B C D)

(A C) → (A B D E) (B C D)

(A D) → (A B C E) (B C D)

(B C) → (A B D E) (A C D E)

(B D) → (A B C E) (A C D E)

(B E) → (A C D E) (B C D)

(C D) → (A B C E) (A B D E)

(C E) → (A B D E) (B C D)

(D E) → (A B C E) (B C D)

(A B) → (C D)

(A C) → (B D)

(A D) → (B C

(B C) → (A D E)

(B D) → (A C E)

(B E) → (C D)

(C D) → (A B E)

(C E) → (B D

(D E) → (B C)

Reduce

A
B

D

C

E

A→ B C D

B→ A C D E

C→ A B D E

D→ A B C E

E→ B C D

(A B) → B C D

(A C) → B C D

(A D) → B C D

(A B) → A C D E

(B C) → A C D E

(B D) → A C D E

(B E) → A C D E

(A C) → A B D E

(B C) → A B D E

(C D) → A B D E

(C E) → A B D E

(A D) → A B C E

(B D) → A B C E

(C D) → A B C E

(D E) → A B C E

(B E) → B C D

(C E) → B C D

(D E) → B C D

(A B) → (C D)

(A C) → (B D)

(A D) → (B C

(B C) → (A D E)

(B D) → (A C E)

(B E) → (C D)

(C D) → (A B E)

(C E) → (B D

(D E) → (B C)

(A B) → (A C D E)

(A B) → (B C D)

(A C) → (A B D E)

(A C) → (B C D)

(A D) → (A B C E)

(A D) → (B C D)

(B C) → (A B D E)

(B C) → (A C D E)

(B D) → (A B C E)

(B D) → (A C D E)

(B E) → (A C D E)

(B E) → (B C D)

(C D) → (A B C E)

(C D) → (A B D E)

(C E) → (A B D E)

(C E) → (B C D)

(D E) → (A B C E)

(D E) → (B C D)

(A B) → (C D)

(A C) → (B D)

(A D) → (B C)

(B C) → (A D E)

(B D) → (A C E)

(B E) → (C D)

(C D) → (A B E)

(C E) → (B D)

(D E) → (B C)

A→ B C D

B→ A C D E

C→ A B D E

D→ A B C E

E→ B C D

splitting mapping shuffling reducinginput output

• Input

• List of points, integer k

• Output

• k clusters

• Algorithm (sequential).

1.Pick k random centers

2.Assign each point to the nearest center

3.Move each center to centroid of cluster.

4.Repeat 2-4 until all centers are stable.

K-means

• K-means iteration.

• map(point, list of centers) → <closest center, point>

• reduce(center, [point1, ..., pointk]) → centroid of point1, ..., pointk

K-means in MapReduce

• Master.

• Dispatches map and reduce task to workers

• Worker.

• Performs map and reduce task.

• Buffered input/output.

• Splitting and shuffling via hashing.

• Combiners.

• Fault tolerance.

• Worker checkpointing.

• Master restart.

MapReduce Architecture

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of ⟨word,document ID⟩
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
⟨word, list(document ID)⟩ pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a ⟨key,record⟩ pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

• Parallelism.

• Communication.

• Failures and error recovery.

• Deadlock and race conditions

• Predictability

• Implementation

MapReduce and Massively Parallel Computation

map(word) → <word, 1>

reduce(word, [1, 1, .., 1]) → <word, number of 1's>

splitting mapping shuffling reducinginput output

• Design patterns.

• Counting, summing, filtering, sorting

• Cross-correlation (data mining)

• Iterative message processing (graph processing, clustering)

• More examples.

• Text search

• URL access frequency

• Reverse web-link graph

MapReduce Applications

• Implementations.

• Google MapReduce (2004)

• Apache Hadoop (2006)

• CouchDB (2005)

• Disco Project (2008)

• Infinispan (2009)

• Riak (2009)

• Example uses.

• Yahoo (2008): 10.000 linux cores, The Yahoo! Search Webmap

• FaceBook (2012): Analytics on 100 PB storage, +.5 PB per day.

• TimesMachine (2008): Digitized full page scan of 150 years of NYT on AWS.

MapReduce Implementation and Users

