
Databases
Course 02807

October 23, 2018

Carsten Witt



Databases
• Database = an organized collection of data, stored and accessed 

electronically (Wikipedia)

• Different principles for organization of data: navigational, relational, 
object-oriented, non-relational (noSQL), …

• Focus here: relational, accessible via SQL (structured query language)

• Elements of relational DB: tables consisting of rows, where rows 
consist of columns [in the theory of DB, a table is a relation]

• Famous relational database systems: Oracle DB, IBM Db2, MS SQL 
Server, PostgreSQL, MySQL, MariaDB, SQLite, …

• Today: databases in SQLite (public domain, easy to use) and access via 
SQL, both from command line and in Python



Example: Bank Database

accounts transactions



Essential SQL commands

• CREATE TABLE …

• INSERT INTO … VALUES …

• SELECT … FROM … WHERE … [ORDER BY …]

WHERE checks a condition, e.g. (in)equality (”<=” etc.), set membership
(”IN”), formulated in basic logic (use connectors AND and OR) …

• UPDATE … SET col = val WHERE …

• DELETE FROM … WHERE …

• DROP TABLE …

https://www.sqlite.org/lang.html

https://www.sqlite.org/lang.html


SQLite Command Line
• apt-get install sqlite3

• sqlite3 bankdb.sqlite

• .tables

• CREATE table accounts(accountId INTEGER PRIMARY KEY, 
balance REAL);

• .schema accounts

• SELECT * FROM accounts;

• CREATE TABLE transactions(transactionId INTEGER PRIMARY 
KEY, date TEXT, amount REAL, fromAccountId INTEGER, 
toAccountId INTEGER);

• INSERT INTO 
transactions(date,amount,fromAccountID,toAccountID) 
VALUES (datetime('now'), 999.98, 2, 3);

• .exit



Data Mining with SQL

• Aggregrate functions AVG, MIN, MAX, SUM, COUNT compute 
statistic from a set of rows

• SELECT AVG(balance) FROM accounts

• SELECT AVG(balance) FROM accounts WHERE balance > 0

• Results can be split according to another column value:
SELECT AVG(amount) FROM transactions GROUP BY 
toAccountId



SQLite from Python
(https://docs.python.org/3.6/library/sqlite3.html?highlight=sqlite3)

#!/usr/bin/python3

import sqlite3

conn = sqlite3.connect('bankdb.sqlite')

c = conn.cursor()

c.execute("INSERT INTO accounts (balance) VALUES (1337)")

conn.commit()

c.execute("SELECT accountId, balance FROM accounts WHERE balance > 1336")

print("First result: “, c.fetchone())

print("All remaining results: “, c.fetchall())

conn.commit()

conn.close()

https://docs.python.org/3.6/library/sqlite3.html?highlight=sqlite3


Advanced SQL Queries: Joining Tables (1/5)

• Problem: find all existing accounts [i.e. accounts appearing in the 
accounts table] to which there were transferred more than 100000 
units of money within the last 2 months and retrieve account ID and 
the total amount transferred.

• Subproblem: find all transactions to existing accounts within the last 
2 months, retrieve account ID and the total amount transferred.



Advanced SQL Queries: Joining Tables (2/5)
• Subsubproblem: find all transactions to existing accounts, retrieve account id and 
individual amount transferred. 

• Note: toAccountId in transactions must show up in accountid of 
accounts table

• Concept: join results from several tables using INNER JOIN

• SELECT transactions.amount,accounts.accountId FROM accounts 

INNER JOIN transactions ON accounts.accountId = 

transactions.toAccountId

• May want to add ORDER BY accounts.accountId



Advanced SQL Queries: Joining Tables (3/5)

• Solution to subproblem:

• SELECT transactions.amount,accounts.accountId FROM 

accounts INNER JOIN transactions ON accounts.accountId

= transactions.toAccountID WHERE transactions.date >= 

date('now','-2 months');

• Not yet! Missing the aggregation:

• SELECT SUM(transactions.amount), accounts.accountId
FROM accounts INNER JOIN transactions ON 

accounts.accountId = transactions.toAccountID WHERE 

transactions.date >= date('now','-2 months') GROUP BY 

accounts.accountId



Advanced SQL Queries: Joining Tables (4/5)

• Solution to full problem: nested SQL and use of alias (”AS”)

SELECT mysum,myid FROM (SELECT 

SUM(transactions.amount) AS mysum, accounts.accountId

AS myid FROM accounts INNER JOIN transactions ON 

accounts.accountId = transactions.toAccountID WHERE 

transactions.date >= date('now','-2 months') GROUP BY 

accounts.accountId) WHERE mysum > 100000;



Advanced SQL Queries: Joining Tables (5/5)

• Alternative: grouping including additional HAVING condition

SELECT SUM(transactions.amount) AS mysum, 

accounts.accountId FROM accounts INNER JOIN 

transactions ON accounts.accountId = 

transactions.toAccountID WHERE transactions.date >= 

date('now','-2 months') GROUP BY accounts.accountId

HAVING mysum > 100000;



Visual SQL Tools

• DB browser for SQLite: http://sqlitebrowser.org/ available for
Windows, Mac and Linux

http://sqlitebrowser.org/


Indexing: Concept

• Usually, contents of columns are internally stored in a list of rows.

• Disadvantages?

• Table columns can be searched efficiently by building a search tree structure on 
them: b-trees (extensions of binary search tres)

• Syntax: CREATE INDEX indname ON table(column)

• Extensible to multi-column indices, e.g., CREATE INDEX indname ON 
table(column1, column2): nested search tree structure



Indexing: Example

• Python script that creates 100 000 000 accounts with random balance 
in 1,…,100 000 000 -> 1.4 GB SQLite database

• SELECT * FROM accounts WHERE balance > 99999990

slowly reveals about 10 entries

• CREATE INDEX balInd on accounts(balance);

• Database file grows by 98%.
• However, the above ”select” statement now yields instantaneous results.



Indexing: Pros and Cons

• Pros: fast search on column

• Cons: 
• Additional space consumption

• Operations such as insertion and updates take longer 
(b-trees have to be updated)

• Correct indexing can be very complex (e.g. if multiple columns involved)

Even if all columns have been indexed, can you quickly find all accounts
where balance + accountId = 999991?



Summary

• SQLite databases via SQL and Python

• SQLite command line: .tables, .schema … etc.

• Python: sqlite3 library, db connection, cursor object, commit

• Basic SQL: CREATE TABLE, SELECT … FROM … WHERE, …

• Advanced queries: inner joins of two tables, aggregation, WHERE, HAVING

• Indexing to speed up search on columns

Questions?


