
Karl M. Heuer /David E. Roberson Autumn 2024
Exercise class:
in 302 on September 24th

Exercises for Computational Tools for Data Science (02807)

Week 4: Similar Items

References and Reading

1. Chapter 3 of Mining of Massive Data Sets, Jure Leskovec, Anand Rajaraman, and Jeff
Ullman.

Exercise 1: Setup

Download the test data and template file similarity.py. Also install the mmh3 library. See
https://pypi.org/project/mmh3/

Exercise 2: q-shingles

Implement a function shingle that takes an integer q and a string and produces a list of
shingles, where each shingle is a list of q words.

Solution: Here, the input string (a document in the case of the test files) would
consist of separate words. The q-shingles for this string would be all of the se-
quences of q consecutive words in the string. For example, if the string was
‘i want to go home do you want to’ and q = 2, then the q-shingles would be
{i want, want to, to go, go home, home do, do you, you want}. Note that we do not include
‘want to’ twice because we only care about the set of shingles, we do not care about the
order. Of course it will probably be output as a list which does have an order but there should
not be repeats. See Section 3.2.2 (page 78) in the online version of the book. Note that in the
book they use sequences of q characters rather than words, but the principle is the same.

Exercise 3: Minhashing Solve the following exercises.

3.1 Implement a minhash algorithm minhash that takes a list of shingles and a seed for
the hash function mapping the shingles, and outputs the minhash. Feel free to use the
listhash function in the template.

3.2 Extend the minhash algorithm to output k different minhashes in an array. Use different
seeds for each minhash, e.g., 1, . . . , k.

Solution: Given a hash function h that maps to integers, the minhash hmin of a set of
elements S is the minimum value that the function h takes on the set S, i.e., hmin(S) =
min{h(s) : s ∈ S}. See Section 3.3.3 (page 82) in the book. In this case the exercise suggests
to use the listhash function provided. So the minhash function should take a list of shingles
(and a seed for listhash) and compute the minhash for this list, i.e., it should compute

https://pypi.org/project/mmh3/

listhash of every shingle in the list and return the minimum value. For the second part just
add k as input and have it return a sequence of k minhashes each using a different seed for
the hash function. Note that we care about the order of the minhashes here, because we will
be comparing the values of the ith minhash of a given list of shingles with the ith minhash of
another list of shingles.

Exercise 4: Signatures

Construct a function signatures that takes the docs dictionary and outputs a new dictionary
consisting of document id’s as keys and signatures as values.

Solution: This should take each document and convert it to a list of q-shingles (so q should
be an input to the function) and then use the function from 3.2 to convert that list of shingles
for that document to a sequence of k minhash values (so k will also be an input) which is
known as the signature of that document. See Section 3.3.4 (page 83) for info on minhash
signatures.

Note that it is not necessarily most efficient to simply compute the signature for each docu-
ment separately. In the book in Section 3.3.5 (page 84), they give an algorithm for computing
the signatures of a collection of sets/documents simultaneously. I give my attempt at pseu-
docode for this algorithm below. Let U be the set of all shingles produced from a given set D
of documents and let shingle(d) denote the list of shingles produced from a given document
d ∈ D (assume that these have already been computed prior to running the below code).
Suppose we are creating signatures using minhashes from hash functions h1, . . . , hk. The fol-
lowing creates a matrix SIG with rows indexed by 1, . . . , k, and columns indexed by D such
that the d column is the signature of document d.

Algorithm 1 MakeSignatures

1: Initialize all SIG(i, d) =∞
2: for s ∈ U do
3: Compute h1(s), . . . , hk(s)
4: for d ∈ D do
5: if s ∈ shingle(d) then
6: for i ∈ {1, . . . , k} do
7: SIG(i, d)← min{hi(s), SIG(i, d)}

Note that after the above finishes the value of SIG(i, d) will be the minhash of shingle(d)
with respect to the hash function hi.

Exercise 5: Jaccard Similarity

Implement a function jaccard that takes two document names and outputs the estimated
Jaccard similarity using signatures.

Solution: Given two sets S and T , the Jaccard similarity of S and T is equal to |S ∩
T |/|S ∪ T |, i.e., the size of the intersection divided by the size of the union of the two sets
(see Section 3.1.1, page 74). For a random injective hash function h, the probability that
hmin(S) = hmin(T) is equal to the Jaccard similarity of S and T (see Section 3.3.3, page 83).
The hash functions used in practice won’t necessarily be injective, but assuming there are not
many collisions we can still use this as an estimation of Jaccard similarity. So this function
should take two documents, convert each to a list of q-shingles (so q should be an input) and
then use the function from 3.2 to convert these into signatures consisting of k minhash values
(so k will be an input). Then it estimates the Jaccard similarity of the two documents by
counting how many positions of the two signatures agree and then dividing that by k.

Exercise 6: Find Similar Items

Implement a function similar that finds all pairs of documents whose estimated Jaccard
similarity is ≥ 0.6. Test your program for different values of k and q. Compare your results
for most similar documents with your own visual impression of the similarity of files.

Solution: This just combines techniques from previous questions. You can use the function
from Exercise 4 to convert all the documents to signatures, and then write a function that
computes Jaccard similarity based on signatures (essentially the second half of the function
from Exercise 5). Then compute/estimate the Jaccard similarity for all pairs of documents
and return those with Jaccard similarity at least 0.6.

Exercise 7: Locality-Sensitive Hashing

Use locality-sensitive hashing to speed up your solution to the find similar item exercise.

Solution: Here, we take our signatures for all of our documents and break them up into b
blocks of length r (so k = br where k is the length of the signatures). For each block, we apply
a hash function to that part of the signature for each of the documents, and if two documents
get hashed to the same value for at least one of the blocks, then they will be considered a
candidate for being similar. We then compute the Jaccard similarity of only the candidate
pairs using their full signatures. Note that the values of b and r need to chosen correctly so
that potential similar pairs are correctly identified. If one wants to identify pairs with Jaccard
similarity at least some value s, then one should choose b and r such that (1/b)1/r ≈ s. See
Section 3.4. (page 91) in the book.

