
Karl M. Heuer /David E. Roberson Autumn 2024
Exercise class:
in 302 on October 22nd

Exercises for Computational Tools for Data Science (02807)

Week 7: Mining social network graphs

For this exercise sheet we recommend installing and using the following Python libraries:
networkx, scikit-learn and matplotlib.

For more information about scikit-learn and matplotlib see Exercise Sheet 6.

For information about networkx see: https://networkx.org/.

Exercise 1: Divisive clustering via Girvan–Newman

Implement a divisive hierarchical clustering algorithm via the Girvan–Newman method and
compute modularity scores. Hence, you should implement the following parts:

1. Compute the betweenness centrality for every edge of a graph.

2. Implement a divisive hierarchical clustering algorithm based on removing edges with
highest betweenness centrality and considering connected components as clusters.

3. Compute modularity for a clustering of a graph.

Test your implementations on the Karate-Club graph, found in networkx.karate club graph.

Compare your implementations with the ones from networkx :

• networkx.algorithms.centrality.edge betweenness centrality

• networkx.algorithms.community.girvan newman

• networkx.algorithms.community.modularity

Use matplotlib to visualise the communities.

https://networkx.org/


Exercise 2: Comparing Girvan–Newman with Louvain

For the following exercise you may use implementations of the Louvain algorithm from scikit-
network, see https://scikit-network.readthedocs.io/en/latest/index.html.

1. Run the Louvain algorithm on the Karate-Club graph as well.

2. Compare the results that the Louvain algorithm and the Girvan–Newman algorithm
yield. For this, compute the modularity of the found clusterings.

3. Visualise a hierarchy of clusterings that can be found by the Louvain algorithm, e.g.
via a dendrogram.

[Optional] Exercise 3:

Consider the following graph G.

Compute the eigenvalues of the Laplacian matrix L(G) of G.

(To compute eigenvalues you could use numpy.linalg.eigvals (you should import numpy).)

(If you use networkx, you could use networkx.linalg.laplacianmatrix to obtain the Laplacian
matrix of G.)

Derive a bipartition of G via the second smallest eigenvalue of L(G).

Compare your result with SpectralClustering from sklearn.cluster for 2 clusters. Experiment
with SpectralClustering, e.g. by using more clusters or running it on the Karate-club graph
from networkx.karate club graph.

https://scikit-network.readthedocs.io/en/latest/index.html

