FINAL PROJECT: SENTIMENT ANALYSIS ON AMAZON REVIEWS

02807 Computational Tools for Data Science

ABSTRACT

In an era where customer data is abundant, understanding cus-
tomer sentiment is pivotal for business success. This project
aims to infer sentiments of some unlabeled reviews based on
a set of sentiment-labeled reviews. We showcase an itera-
tive process of developing a supervised text vectorizer spe-
cific to the review data set. The vectorizer utilizes modified
versions of TF-IDF to ensure that sentiment-specific words
have increased weights. The clustering algorithms KMeans,
KMeans++, and CURE are used to determine sentiment clus-
ters of the vectorized data. KMeans++ significantly reduces
the runtime compared to KMeans while obtaining better accu-
racy than CURE. BERT is used as a reference vectorizer as it
is state of the art within natural language processing (NLP). A
simple vectorizer combined with a K-Nearest Neighbor clas-
sifier serves as a benchmark for a simple model. Vader, a sen-
timent dictionary, is able to capture both emotion polarity and
intensity and is therefore used as an application specific refer-
ence. The developed vectorizer has a similar performance to
BERT when both are combined with KMeans++ - test accu-
racies of 39,6% and 40.2%. VADER outperforms this with a
test accuracy of 45.9%. The highest test accuracy (60.4%) is
obtained with a combination of the developed TF-IDF vector-
izer and the KNN classifier. This is, however, computation-
ally expensive for large data sets and specifically trained for
the topic.

1. INTRODUCTION

In the dynamic field of natural language processing (NLP),
sentiment analysis is essential for understanding the emo-
tional nuances in texts, especially for businesses engaging
with private customers. For these businesses, analysis of
customer reviews can be a powerful tool to increase product
quality and relevance. However, businesses often lack high
quality data and a key component in review data is the senti-
ment of the review.

This project aims to solve the problem of labelling
customer reviews without a sentiment label by learning from
a set of sentiment-labelled reviews. The remainder of the
report is structured in the following sections: Sec. 2 describes
the data as well as the necessary preprocessing. In sec. 3, a
simple unsupervised clustering approach is performed using

Reveiew ratings distribution

rating
350000 | W 1
2
-3
4
-

300000 4

250000

200000

counts

150000
100000

50000

o | ——

1 2 3 4 5

Fig. 1: The imbalanced distribution of review ratings.

minhashing. Sec. 4 develops a supervised sentiment vector-
izer specific to the chosen data set using one-hot encoding
and TF-IDF. Sec. 5, investigates and discusses whether the
clustering algorithm CURE outperforms KMeans for this ap-
plication. Sec. 6 compares the developed model with the
general, pre-trained vectorizer BERT [1]. In secs. 7 and 8,
relevant benchmark models provide references to evaluate
the performance of the developed model and conclude on the
findings. Extra-curricular topics include KMeans++, KNN,
text embedding, and sentiment analysis.

2. DATA AND PREPROCESSING

This dataset is the Arts, Crafts and Sewing category of Ama-
zon review released in 2014[2]. It includes reviews (ratings,
text, helpfulness votes), product metadata, and links. Our pri-
mary interest lies in the review ratings and associated text.
With a comprehensive collection of 494,485 reviews, the ma-
jority tends to garner 5-star ratings, as depicted in fig.1.

In the process of preparing and analyzing the dataset,
we initiated by categorizing the review ratings into three sen-
timent classes: ratings 1 and 2 were designated as negative, 3
as neutral, and ratings 4 and 5 as positive. However, a signif-
icant imbalance was observed among these three categories.
To address this, we opted for a random selection approach,
ensuring an equal number of samples for each sentiment cat-
egory. This resulted in a balanced dataset comprising 27,142
reviews for each sentiment class, totaling 81,426 reviews.

For text preprocessing, we implemented several steps

Word Cloud for negative Word Cloud for neutral Word Cloud for positive

WO K A== oo

“ i Bcome bevenL e v%rk A yA
= QS uv: :0c i i
EX ok e O ke N e

E ‘ gredtonenead

machine

Fig. 2: The word clouds of the negative (left), neutral (center),
and positive (right) sentiment reviews.

to refine the dataset. Initially, all non-word strings were
removed. Subsequently, we conducted lemmatization, elim-
inated stop words, and discarded single-letter words, ulti-
mately yielding a thoroughly cleaned set of reviews. Post-
cleaning, word clouds were generated for each sentiment
category, as illustrated in fig.2. The word clouds for the neg-
ative, ’neutral,” and ’positive’ reviews exhibit no obvious
differences in sentiment.

The data is split into a train (80%), validation (10%),
and test set (10%). This is done to allow the training of
word embedders, cluster centroid definition, model tuning,
and testing of generalization error. Since random guessing
of sentiment should amount to a 33% success rate, this is the
baseline of performance for our sentiment analysis.

3. MINHASHING

To enable the sentiment analysis of the reviews a number of
different methods of word embedding (i.e., vectorization of
the reviews) have been performed, and their ability to charac-
terize the different sentiments analyzed. Initially, the reviews
are vectorized by minhashing with a vector size/number of
hash functions of 100. The shingle size is 1, which is neces-
sary as a significant amount of reviews are one-word reviews
- especially after cleaning of the data. The KMeans cluster-
ing algorithm is implemented (in class K_Means in the
notebook) and will be used to evaluate the performance of
the vectorizers developed here. Thus, the minhash-vectorized
train reviews are clustered into 3 clusters. It shows no ability
to cluster between sentiments - even on the training set - as all
three sentiment labels are well represented in all three clus-
ters (see fig.5, appendix). Predicting on the validation data
works by assigning a validation review into its closest clus-
ter and predicting the sentiment with the highest frequency
of that cluster in the training set. The training accuracy is
35.3%, whereas the validation accuracy is 36.4%. It is shown
that the sentiment of the review is not the dominating feature
when clustering based on an untrained, unsupervised word
embedding. Another important drawback of this minhashing
approach is the lack of interpretable. In the following section,
to increase the purity of the clusters, vectorizers, which take
the sentiment into account, will be developed.

4. SUPERVISED CLUSTERING

4.1. One-hot vectorization

Initially, a very simple approach using one-hot encoding is
used. Here, the features are defined as all unique words in
the text while the vectorization results in a sparse matrix
X,n with dimensions (n_samples, n_features). Here,
Xon,i,ry = 1if feature f occurs in training document . If
not, Xop 5,5y = 0. The vectorizer is fitted on the training
data before transforming (i.e., vectorizing) both the training
and validation data. Subsequently, K-Means clustering is per-
formed on both data sets with accuracies 38.3% and 37.8%,
respectively. Furthermore, a plotting the sentiments in the
clusters reveals that this method creates only two clusters
with all three sentiments almost equally represented (see ap-
pendix fig.6). It should be mentioned that the runtime of this
model is long due to the large number of features.

The methods developed in the remainder of this sec-
tion are supervised in the sense that the vectorizers utilize the
known sentiment label of the training documents.

4.2. Sentiment score from one-hot encoding

The one-hot encoding is made supervised by creating another
sparse matrix Xge,; with dimensions (n_sentiments,
n_features). Element X, (s,) = 1 if feature f occurs
in at least one document with sentiment s (given the rating
in the review) - else 0. The vectorization is found by the dot
product Xyrans = Xoh, (i, 1) .X;";m resulting in a matrix with
dimensions (n_samples,n_sentiments). This means
clustering is now performed based on a positive, neutral, and
negative sentiment score for each document. Thus, a signifi-
cant dimensionality reduction has been performed which also
substantially reduces the runtime of clustering algorithms.
Again, using K-Means clustering on the training set and
predicting the sentiment of the validation set by assigning a
review to the closest centroid, the training accuracy is 38.7%,
and the validation accuracy is 38.2%. Another simple way of
evaluating the vectorization is by assigning a train or valida-
tion point ¢ to the sentiment with the highest component value
(i.e., using argmax on the vector Xy,qys ;). This results in
train and validation accuracies of 0.382 and 0.321 suggesting
that the vectorizer is unable to capture the dominant sentiment
in the reviews. Fig.3 shows the one-hot-vectorized training
points in 3D (right). It is clear that high values of all three
sentiment components are given to long reviews whereas low
values are given to short reviews, thus confirming that the
vectorizer is unable to capture the sentiment. This may be
avoided if the elements in X,y (;,) are weighted depending
on the length of the given review <.

4.3. TF-IDF vectorization

Exactly this weighting can be implemented with TF-IDF. The
workflow of the fit function of the TF-IDF vectorizer can be
summarized as: (i) Count number of review appearances of
all unique tokens. (ii) Merge all reviews of similar sentiment.
(iii) Count number of sentiment appearances of all unique to-
kens if number of review appearances exceeds a given thresh-
old - this is a form of feature selection to remove features
which are rarely used overall. (iv) Compute "TF-ISF” (In-
verse Sentiment Frequency) for all remaining tokens in each
sentiment cluster - creates a weight matrix, Xy, of dimen-
sions (n_sentiments, n_features). Contrary to the bi-
nary one-hot vectorizer, the elements in this matrix can take
any non-negative value and is a measure of how defining fea-
ture f is for sentiment s in the training data. The ISF dif-
fers slightly from the IDF because N is the number of sen-
timents, 3 - significantly lower than N in a typical use case
of IDF where N is the number of texts. Thus, applying reg-
ular TF-IDF results in a weight of X ¢ 5,5y = 0 for all
features f present in at least one review in each sentiment
s. Thus, a word occuring 10,000 times in the reviews with
one sentiment and once in the other two sentiments will not
be used to determine the sentiment. We have found this to
be a problem, especially in very large data sets where virtu-
ally all words occur in all three sentiments. For this reason
a non-linear, non-logarithmic (e.g., polynomial) conversion
from the inverse frequency will give some weight to words
which appear in reviews from all three sentiments while still
giving a higher weight to sentiment-specific words. Here, a
second-order polynomial is used.

As for one-hot, transformation is performed by the dot
product X;pqns = th:idf.Xg;m. Here, X, f.iar,i,f) 1 the
TF-IDF of feature f in review ¢ (ISF is not necessary here, as
IDF is calculated based on all reviews in the training set).

By clustering on the TF-ISF weighted sentiment vec-
torization of the reviews the training accuracy is 37.2% and
the validation accuracy is 35.9%. This is outperformed by,
but comparable to, the one-hot-weighted sentiment vectoriza-
tion. However, looking at fig.3, it is evident that the sentiment
of each review is more defining of the scores achieved during
the TF-IDF vectorization, whereas the one-hot vectorization
of the reviews primarily characterize the lengths of the docu-
ments with small differences in values between score in each
sentiment. This showcases the potential of characterizing the
sentiment of a review based on our TF-IDF inspired word-
embedding.

Two important hyperparameters of the KMeans algo-
rithm are the number of clusters k and the chosen norm. By
validation of k € [1 : 10] and L1, L2, and infinity norms, it
is found that the optimal validation accuracy is obtained with
7 clusters using the infinity norm. The validation accuracy is
improved to 39.5% and the training accuracy is 44.6% - show-
ing small signs of overfitting compared to clustering into 3

TF-IDF vs. OneHot encoding

One-hot Vectorizer
TF-IDF Vectorizer
-+ negative
neutral
positive

- negative
neutral
positive

21035 anyisod

0
10

100 200 300 400 500
neutral score

40
Ny 60 e
Urars, 40 80 e 0
<ore 50 100 eo®

Fig. 3: 3D vectorization of the reviews in the training set by
computed score for each sentiment. True sentiment of the re-
view is denoted by color. The OneHot encoded reviews are
mainly discerned by review length whereas the TF-IDF em-
bedding is defined more by the sentiment of the review and
irrespective of the review length.

clusters. These findings could be further validated by the use
of K-fold cross-validation, but is computationally heavy on
a data set of this size and is considered out of scope of this
project. The simple assignment rule - assign review to the
sentiment with the largest score - gives a training accuracy of
64.6% and a validation accuracy of 56.7%.

The immediate conclusion is that the KMeans cluster-
ing algorithm is not suited for this type of vectorized data
as even a simple assignment rule outperforms it. However,
it does show that the vectorization is successful in embed-
ding the sentiment of a review, also outside the training set.
Improvement of the clustering performance will be discussed
further in sec. 5.

5. CLUSTERING ALGORITHMS

In this section, an improved K-Means (K-Means++) and the
CURE algorithm is implemented and evaluated on the Arts,
Crafts and Sewing data set. The CURE algorithm is imple-
mented in the class Cure while K-Means++ is implemented
as an alternative fit algorithm in the class K_Means.

5.1. K-Means++

In the preceding section, while the algorithm has demon-
strated effective performance, the issue of sluggish conver-
gence speeds arises when dealing with large datasets due to
the extensive number of iterations.

To tackle this challenge and enhance convergence ef-
ficiency, we aim to minimize the necessary iterations. Specif-
ically, we introduce a refinement to the initialization step of
the KMeans algorithm. The conventional random selection
of initial centroids may result in the creation of center points
in close proximity, leading to increased iterations for conver-
gence. By strategically positioning the initial state closer to

the eventual convergence state, we can reduce the required
iterations.

Clusters exhibit a centripetal nature, indicating that
points within the same cluster share a close spatial relation-
ship. In contrast, points located at a greater distance are more
likely to belong to different clusters than their closely situ-
ated counterparts. Building upon this principle, we introduce
a mechanism that modulates the probability of point selection
based on their distance from the center of all clusters. This
mechanism augments the likelihood of selecting points as
they move farther from the cluster centers and decreases this
probability as points draw nearer.

The optimization process iterates until a total of K
cluster centers are selected, adhering to the fundamental prin-
ciple of our K-means optimization approach.

Algorithm 1 K-Means++

Require: Number of clusters K, set of datapoints D =
{p17p27 s 7pn}
Ensure: Clusters
1: Choose first cluster centroid ¢; randomly from D
2: repeat
3: for each p do
4 Compute the distance d(p, ¢;) to the nearest clus-

ter centroid ¢; using d(p, ¢;) = /(¢; — p)?
5: Choose the next cluster centroid c;, selecting ¢; =
pn € D with probability %
6: end for
7: until all the cluster centroids have been chosen
8: repeat
9: for each p do
10: Compute the distance d(p, ¢;) to the nearest clus-
ter centroid ¢; using d(p, ¢;) = \/(¢; — p)?
11: Assign each p to the cluster of the nearest centroid
&
12: Update each cluster centroid ¢; by taking the av-
erage of all assigned p in each cluster
13: end for

14: until no longer changes in the cluster centroids
15: End

5.2. Comparison of clustering algorithms

The introduced clustering algorithms are fitted on the embed-
ded training set as presented in sec. 4.3. The K-Means++
algorithm results in a significant run time reduction from 24.6
seconds to 1.26 s before convergence for 4 clusters. The train
and validation accuracy of the model does not differ from
the regular K-Means algorithm as it did not converge in a
local minimum. However, it is shown that the implemented
K-Means++ algorithm can consistently converge close to 20
times faster than the regular K-Means algorithm.

The CURE algorithm is, among other parameters,

tuned based on the minimum distance (d,,;,) allowed be-
tween two representatives of separate clusters before the
clusters are merged. In fig. 3 it is shown that the scale of
the vectorized data runs from O to 50 with a dense center
closer to origin. The algorithm is initialized with 400 clusters
randomly distributed to reduce runtime compared to a pure
hierarchical clustering approach where all data points are
individual clusters initially. The model tuning evidently has
significant impact on the clustering results. As d,,;, — 0 the
number of clusters — 400. Training and validation accura-
cies from the clustering performed by the CURE algorithm
for lower values of d,,;, are increasing, with significantly
higher run time ensuing. However, the clusters formed do
not carry any meaningful individual relations. It does hint
that a KNN-classifier might be suitable for the sentiment
analysis task based on the constructed vectorizer as this is
similar to the way the clustering is used to predict sentiment
in this report. Running the CURE algorithm is significantly
more time consuming than the K-Means++ algorithm and
offers little or no improvement of the validation accuracy as a
clustering algorithm, while only fitting on a small part of the
training data. It however shows that other methods might be
preferable and offers a view into a different approach of tack-
ling the sentiment analysis than KMeans clustering. Similar
to the CURE algorithm, the DBSCAN algorithm has been
implemented, but the runtime of the algorithm was over an
hour for a significantly smaller data set so it is not pursued as
a realistic alternative.

6. PRE-TRAINED FEATURE EXTRACTION
METHODS

In sentiment analysis the ability to capture the contextual nu-
ances and underlying emotional tone of text data is crucial.
This capability largely hinges on the effectiveness of the em-
bedding extraction methods utilized to convert text into a nu-
merical form that machine learning models can process as
seen in sec. 4. Our study of pre-trained methods employs two
prominent embedding techniques: Word2Vec (W2V) [3] and
BERT (Bidirectional Encoder Representations from Trans-
formers) [1]. W2V, a neural network-based technique, learns
word associations from large corpora of text by predicting
words in a context. It encapsulates words in dense vectors
that encode semantic and syntactic meanings, allowing words
with similar contexts to have similar representations in the
vector space. Despite its utility in various NLP tasks, W2V
has limitations, especially when dealing with the subtleties
of sentiment analysis. The absence of sentence-level em-
beddings means that the model cannot effectively discern the
sentiment conveyed by the structure and flow of a sentence,
which can lead to significant misinterpretations in sentiment
analysis.

To overcome the limitations presented by W2V and
other traditional embeddings, BERT represents a significant

leap forward in embedding extraction by considering the full
context of a word — both the words that come before and af-
ter. This bidirectional understanding is crucial for accurately
capturing sentiment, as the meaning and tone of a word is
often altered by its surrounding words. BERT’s mechanism
of pre-training on a vast corpus and then fine-tuning for spe-
cific tasks enables it to grasp the subtleties of language, in-
cluding sentiment-laden expressions, negations, and nuances
that often elude less sophisticated models. Here, we used the
same data to show the difference of the distribution between
Word2Vec and Bert embeddings as shown in fig.4 - in a sim-
plified vector space consisting of the two principle compo-
nents as the number of features for e.g. BERT is 748 for this
data.

KMeans Clustering

KMeans Clustering

s
.0

'1. .
P

0% oo

beaz
g
.-I
hJ ~
o --"
.’ .
PCA 2

) I T T S) H a

PCA1
(a) KMeans Clustering with
Word2Vec Embeddings

(b) KMeans Clustering with
BERT Embeddings

Fig. 4: Comparative visualization of KMeans clustering ap-
plied to Word2Vec and BERT embeddings. The BERT em-
beddings demonstrate a more distinct and cohesive cluster-
ing, reflecting BERT’s ability to capture contextual nuances in
sentiment analysis. The overlapping regions and less defined
cluster boundaries in Word2Vec underscore its limitations in
differentiating sentiment when context is a key factor.

Even though both W2V and BERT transform text
into numerical embeddings, this comparative analysis sug-
gests that BERT’s contextually aware embeddings are more
effective for sentiment analysis. W2V provides a good foun-
dational approach to text embeddings, but BERT’s advanced
contextual embeddings offer a superior alternative for the
intricate task of sentiment analysis. Using BERT embedding
and KMeans clustering (k=7) results in a test accuracy of
44.5% which outperforms the TF-IDF vectorizer. However,
given the high feature dimensionality (768), the clustering is
much more computationally expensive than for TF-IDF (3
features).

7. K-NEAREST NEIGHBOR

A k-nearest neighbor (KNN) classifier is a simple non-
parametric model which makes it an ideal choice as a bench-
mark for the model developed in the previous sections. The

KNN algorithm is summarized in alg. 2.

Algorithm 2 KNN

1: for ¢ € Xies: do

2 for: € X;rqin do

3 di = |lg —il|2

4: end for

5 k_min_ix < argsort(d;)[: k]

6 Ypred,g < Mode(Yirain [k-min_iz])
7. end for

The KNN classifier operates on a simple yet effective
principle that utilizes the proximity of data points to perform
classification. KNN finds the ’k’ closest neighbors by mea-
suring the distance/similarity between a test instance and ev-
ery instance in the training set. Other distance measures like
Manhattan or cosine similarity may also be used, but the Eu-
clidean distance—represented by the L2 norm in the pseu-
docode is used here. The value of k in KNN algorithms is
important since it controls how sensitive the algorithm is to
noise in the training set. The algorithm is more susceptible
to noise the smaller the value of k; conversely, the algorithm
is more robust the bigger the value of ”’k,” however accuracy
may suffer. In this use-case, the data is extensive and dense
which justifies a relatively high value of k. Once the nearest
neighbors are identified, KNN uses a majority vote system
implemented via the mode() function in the pseudocode to
assign the label. It chooses the label that appears most fre-
quently among the k nearest neighbors as the prediction for
the test instance.

8. DISCUSSION AND CONCLUSIONS

In their 2022 study, Mohammadi and Tavakoli developed
"WassBERT’, a high-performance BERT-based model for
Persian sentiment analysis. This approach, utilizing an opti-
mized loss function and novel data augmentation, analyzed
Persian movie comments with a focus on multi-label senti-
ment classification. Remarkably, it achieved an accuracy of
94.06%, demonstrating its efficacy in processing Persian lan-
guage sentiments[4]. This is the state-of-the-art performance
of a contextual embedding neural network sentiment classi-
fying model trained on a specific dataset, which is similar to
the task being solved on the Arts, Crafts, and Sewing data set
by our vectorizer and clustering approach to classification in
this report. A similar deep neural network classification of the
sentiment of the reviews in the test data set is done by the sen-
timent analysis model Sent iment IntensityAnalyzer
provided by nltk, which utilizes the sentiment specialised lan-
guage model VADER. This model is however not specifically
trained on a training set on the same topic as the test set its
labelling accuracy is now evaluated on. The test accuracy of
sentiment labelling can be seen in tab.1. This offers the op-
portunity to compare the performance of both different word

Word embedding | Classification method | Accies
TF-IDF KMeans++ 39.6%
BERT KMeans++ 44.5%
Count-vectorizer KNN 49.6%
TF-IDF KNN 60.4%
VADER VADER 45.9%

Table 1: Comparison of highlighted models’ test accuracies.

embedding models and different approaches to clustering and
classification of sentiments. The desire is to compare the per-
formance of the Tf-IDF vectorization with other vectorization
techniques - i.e. BERT and a simple count-vectorizer creat-
ing features based on the most frequently appearing words
- as well as compare the clustering approach of this report
compared to a simple classifier. First off, it is evident that
the attempt to cluster the reviews and predict their sentiment
based on the sentiment primarily associated with that cluster
is an ineffective and unreliable method in sentiment analy-
sis. A simple classifying algorithm, KNN, outperforms the
clustering approach by 20%-points. Conversely, the TF-IDF
vectorizer’s accuracy is 6%-point lower than BERT’s when
comparing the test accuracy of the K-Means++ classification
based on the two word embeddings. This supports the argu-
ments made that meaningful sentiment relations is embedded
by the TF-IDF vectorizer, but also showcases that the bi-
directional and contextual features are necessary to increase
performance further.

Comparing these results - as well as the accuracy of
45.9% of VADER - to the Persian WassBERT model’s 94%
accuracy, the gap in performance is significant, but it is worth
noting that this upper benchmark performance might depend
heavily on the set of reviews in question. The Arts, Crafts,
and Sewing Amazon data set could likely be generally dif-
ficult to classify given VADER’s and BERT’s low accuracy.
Furthermore, an underlying assumption for the supervised
vectorizer is that the review rating and text sentiments are
near-perfectly correlated. This may be challenged given the
low performance of VADER and BERT.

References

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional transform-
ers for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume I (Long and Short
Papers), Minneapolis, Minnesota: Association for Com-
putational Linguistics, Jun. 2019, pp. 4171-4186. DOI:
10.18653/v1/N19-1423. [Online]. Available:
https://aclanthology.org/N19-1423.

(2]

(3]

(4]

J. Ni, J. Li, and J. McAuley, “Justifying recommenda-
tions using distantly-labeled reviews and fine-grained
aspects,” in Proceedings of the 2019 conference on em-
pirical methods in natural language processing and the
9th international joint conference on natural language
processing (EMNLP-IJCNLP), 2019, pp. 188-197.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in
neural information processing systems, Curran Asso-
ciates, Inc., vol. 26, 2013. [Online]. Available: https:
//proceedings .neurips.cc/paper/2013/
file/9aa42b31882ec039965f3c4923¢ce901b
Paper.pdf.

M. Mohammadi and S. Tavakoli, “Wassbert: High per-
formance bert-based persian sentiment analyzer and
comparison to other state-of-the-art approaches,”

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Appendix

Contribution outline: All group members contributed
equally.

True labels in clusters (minhashing)

B Cluster 0
12000 B Cluster 1 |
[Cluster 2
10000
i}
£
S 8000
o
o
(=4
E
o 6000
=
#
4000
2000

-1 0 1
True label

Fig. 5

True labels in clusters (one-hot sparse)

16000 { mmm Cluster 0
mmm Cluster 1
14000 1 © Cluster 2
12000
10000
8000
6000
4000
2000 +
04
-1 [1

True label

training points

Fig. 6

Fig. 7: Resulting clusters when using CURE (left) and
KMeans++ (right) on TF-IDF vectorized training data.

	 Introduction
	 Data and preprocessing
	 Minhashing
	 Supervised clustering
	 One-hot vectorization
	 Sentiment score from one-hot encoding
	 TF-IDF vectorization

	 Clustering Algorithms
	 K-Means++
	 Comparison of clustering algorithms

	 Pre-trained Feature Extraction Methods
	 K-Nearest Neighbor
	 Discussion and conclusions

